JindoFS 是云原生的文件系统,可以提供OSS 超大容量以及本地磁盘的性能
JindoFS 之前
在 JindoFS 之前,云上客户主要使用 HDFS 和 OSS/S3 作为大数据存储。HDFS 是 Hadoop 原生的存储系统,10 年来,HDFS 已经成为大数据生态的存储标准,但是我们也可以看到 HDFS 虽然不断优化,但是 JVM 的瓶颈也始终无法突破,社区后来重新设计了 OZone。OSS/S3 作为云上对象存储的代表,也在大数据生态进行了适配,但是由于对象存储设计上的特点,元数据相关操作无法达到 HDFS 一样的效率;对象存储给客户的带宽不断增加,但是也是有限的,一些时候较难完全满足用户大数据使用上的需求。
Jindo 的由来
EMR Jindo 是阿里云基于 Apache Spark / Apache Hadoop 在云上定制的分布式计算和存储引擎。Jindo 原是内部的研发代号,取自筋斗(云)的谐音,EMR Jindo 在开源基础上做了大量优化和扩展,深度集成和连接了众多阿里云基础服务。阿里云 EMR (E-MapReduce) 在 TPC 官方提交的 TPCDS 成绩,也是使用 Jindo 提交的。
http://www.tpc.org/tpcds/results/tpcds_perf_results.asp?resulttype=all
JindoFS
EMR Jindo 有计算和存储两大部分,存储的部分叫 JindoFS。JindoFS 是阿里云针对云上存储定制的自研大数据存储服务,完全兼容 Hadoop 文件系统接口,给客户带来更加灵活、高效的计算存储方案,目前已验证支持阿里云 EMR 中所有的计算服务和引擎:Spark、Flink、Hive、MapReduce、Presto、Impala 等。Jindo FS 有两种使用模式,块存储模式和缓存模式。下面我们来分析下,JindoFS 是如何来解决大数据上的存储问题的。
image
块存储模式
计算和存储分离是业界的趋势,OSS 这样的云上存储能力是无限大的,成本上非常有优势,如何利用 OSS 提供的无限存储能力,同时又高效地操作文件系统的元数据。JindoFS 块存储模式提供了一套完整的云原生解决方案。
image
JindoFS 的块存储模式,在元数据上使用 JindoNameService 服务管理 Jindo 文件系统元数据,元数据操作的性能和体验上可以对标 HDFS NameNode。同时,JindoStorageService 保障了数据可以始终有一份存在 OSS 上,即使数据节点被释放,数据也可以随时从 OSS 上拉取,成本上也可以做到更加灵活。
JindoFS 的块存储模式,也支持多种存储策略,比如,本地存两份,OSS上存一份;本地存两份,OSS上不存储;本地不存,OSS上存一份等等。用户可以充分利用不同的存储策略根据业务或者数据冷热进行使用。
块存储使用了全新的 jfs:// 格式,原始 HDFS/OSS 数据通过 distcp 方式即可完成数据导入,同时,JindoFS 提供了 SDK,在 EMR 集群外部,用户也可以读写 Jindo FS。
缓存模式
缓存模式,正如“缓存”本身的含义,通过缓存的方式,在本地集群基于 JindoFS 的存储能力构建了一个分布式缓存服务,远端的数据可以保存在本地集群,使远端数据变成“本地化”。简单地描述 JindoFS 缓存模式解决的问题 就是 OSS / 远端HDFS 已经有了大量数据,每次读数据的时候网络带宽经常被打满,Jindo FS 就可以通过缓存模式优化网络带宽的限制。
“原来的文件路径是 oss://bucket1/file1 或 hdfs://namenode/file2,不想改作业的路径可以吗?”。是的,不需要修改。EMR 对 OSS 进行了适配(后续会支持远端 HDFS 的场景),可以通过配置的方式使用缓存模式。缓存对于上层的作业做到了完全无感。
但是缓存模式也不是万能的,为了保证多端数据一致性,rename 这种操作一定要同步刷新到远端的 OSS / HDFS,特别是 OSS 的Rename 操作比较耗时,缓存模式对 rename这种文件元数据操作暂时不能优化。
JindoFS 介绍
JindoFS 主要包含两个服务组件:Namespace的服务以及Storage 服务,Namespace服务主要JindoFS 元数据管理以及 Storage 服务的管理, Storage 服务主要负责 用户数据的管理包含本地数据的管理和OSS上数据的管理, JindoFS是云原生的文件系统,可以提供本地存储的性能以及OSS的超大容量。下面我们分别介绍下这两个服务的主要功能。
Namespace 主要用来管理用户的元数据,这部分元数据包含JindoFS 文件系统的元数据, Block 的元数据以及 Storage 服务的元数据,JindoFS Namespace服务可以在单个集群上支持不同的Namespace, 用户可以根据不同的业务划分不同的Namespace,不同的Namespace存放不同业务数据。此外Namespace可以设置不同存储后端现阶段主要支持RocksDB,OTS的支持预计在下个版本发布,针对Namespace的性能我们支持大量的优化,比如支持目录级别的并发控制,元数据的缓存等等。
Storage 服务主要负责实际的数据管理,本地缓存的数据管理以及OSS数据管理,可以支持不同的存储后端以及存储介质,存储后端现阶段主要支持本地文件系统以及OSS, 本地存储系统可以支持HDD/SSD/DCPM等存储介质,用以提供缓存加速,另外Storage 服务针对用户的小文件较多的场景进行优化,避免过多的小文件给本地文件系统带来过大的压力造成整体性能的下降。
此外在整个生态方面,JindoFS 支持EMR 框架的所有计算引擎,包括Hadoop, Hive, Spark, Flink, Impala, Presto 以及 HBase, 用户只要替换文件访问路径的模式为jfs就可以使用JindoFS,另外在机器学习方面下个版本JindoFS将会推出Python SDK, 方便机器学习用户可以高效率的访问JindoFS上的数据,另外JindoFS 与 EMR Spark高度集成优化,支持基于Spark的物化视图以及Cube的优化,实现秒级Adhoc的分析
作者:诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作。