1. CamShift思想       

       Camshift全称是"Continuously Adaptive Mean-SHIFT",即连续自适应的MeanShift算法,是MeanShift算法的改进。CamShift的基本思想是视频图像的所有帧作MeanShift运算,并将上一帧的结果(即Search Window的中心和大小)作为下一帧MeanShift算法的Search Window的初始值,如此迭代下去。

       这个过程其实和用MeanShift做跟踪一样,可以参见我的另一篇博文“Meanshift之目标跟踪”,这里把我画的流程图搬过来。



opencv 目标识别 opencv目标跟踪原理_opencv 目标识别


2. cvCamShift( )详解


     CamShift号称连续自适应MeanShift,在算法理论上并没有什么区别,甚至在编程的流程上也没什么区别,他们的区别体现在程序内部

int cvCamShift( const void* imgProb,        //概率图
            CvRect windowIn,                    //起始跟踪区域
            CvTermCriteria criteria,            //迭代终止条件
            CvConnectedComp* _comp,             //可选参数,表示连通域结构体  
            CvBox2D* box )                      //可选参数,存储旋转矩形的坐标,包括中心,尺寸和旋转角

和MeanShift一样,返回值是迭代次数。这里比MeanShift多了一个参数box。

函数原型见 ..\OpenCV249\sources\modules\video\src\camshift.cpp

CV_IMPL int
cvCamShift( const void* imgProb, CvRect windowIn,
            CvTermCriteria criteria,
            CvConnectedComp* _comp,
            CvBox2D* box )
{
    const int TOLERANCE = 10;  //公差=10
    CvMoments moments;
    double m00 = 0, m10, m01, mu20, mu11, mu02, inv_m00;
    double a, b, c, xc, yc;
    double rotate_a, rotate_c;
    double theta = 0, square;
    double cs, sn;
    double length = 0, width = 0;
    int itersUsed = 0;
    CvConnectedComp comp;
    CvMat  cur_win, stub, *mat = (CvMat*)imgProb;

    CV_FUNCNAME( "cvCamShift" );

    comp.rect = windowIn;

    __BEGIN__;

    CV_CALL( mat = cvGetMat( mat, &stub ));

    //调用cvMeanShift函数
    CV_CALL( itersUsed = cvMeanShift( mat, windowIn, criteria, &comp ));
    windowIn = comp.rect;
	
	//-------------下面的程序是和MeanShift( )的区别所在------------
	//区别1:对边界情况进行处理,
	//CamShift()中将windowIn沿x和y方向拉大了2个TOLERANCE,并且确保windowIn不越界。Meanshift无此操作
    windowIn.x -= TOLERANCE;
    if( windowIn.x < 0 )
        windowIn.x = 0;

    windowIn.y -= TOLERANCE;
    if( windowIn.y < 0 )
        windowIn.y = 0;

    windowIn.width += 2 * TOLERANCE;
    if( windowIn.x + windowIn.width > mat->width )
        windowIn.width = mat->width - windowIn.x;

    windowIn.height += 2 * TOLERANCE;
    if( windowIn.y + windowIn.height > mat->height )
        windowIn.height = mat->height - windowIn.y;

    CV_CALL( cvGetSubRect( mat, &cur_win, windowIn ));//在mat中提取windowIn区域

    /* Calculating moments in new center mass */
    //计算新中心处的颜色统计矩
    CV_CALL( cvMoments( &cur_win, &moments ));

	//区别2:计算并保存了目标旋转的结果,meanshit()并未考虑旋转
    m00 = moments.m00;		//0阶空间矩
    m10 = moments.m10;		//水平1阶
    m01 = moments.m01;		//垂直1阶
    mu11 = moments.mu11;	//水平垂直2阶中心距
    mu20 = moments.mu20;	//水平2阶
    mu02 = moments.mu02;	//垂直2阶

    //目标矩形的质量太小了就退出
    if( fabs(m00) < DBL_EPSILON )//系统预定于的值,DBL_EPSILON=2.2204460492503131e-016
        EXIT;

    //质量的倒数,只是为了下面计算方便,可以把除法表示成乘法
    inv_m00 = 1. / m00;
    xc = cvRound( m10 * inv_m00 + windowIn.x );
    yc = cvRound( m01 * inv_m00 + windowIn.y );  //(xc,yc)是重心相对于图像的坐标想
    a = mu20 * inv_m00;
    b = mu11 * inv_m00;
    c = mu02 * inv_m00;

    /* Calculating width & height */
    square = sqrt( 4 * b * b + (a - c) * (a - c) );

    /* Calculating orientation */
    //计算目标主轴方向角度
    theta = atan2( 2 * b, a - c + square );   //theta是与x轴的夹角

    /* Calculating width & length of figure */
    cs = cos( theta );
    sn = sin( theta );

    rotate_a = cs * cs * mu20 + 2 * cs * sn * mu11 + sn * sn * mu02;
    rotate_c = sn * sn * mu20 - 2 * cs * sn * mu11 + cs * cs * mu02;
    //下次搜索窗口的长宽,注意不是width和height
    length = sqrt( rotate_a * inv_m00 ) * 4;
    width = sqrt( rotate_c * inv_m00 ) * 4;

    /*根据length和width的大小对length、width、theta进行调整*/
    if( length < width )
    {
        double t;
        
        CV_SWAP( length, width, t );
        CV_SWAP( cs, sn, t );
        theta = CV_PI*0.5 - theta;
    }

    /* 结果保存在comp中 */
    if( _comp || box )
    {
        int t0, t1;
        int _xc = cvRound( xc );
        int _yc = cvRound( yc );

        t0 = cvRound( fabs( length * cs ));
        t1 = cvRound( fabs( width * sn ));

        t0 = MAX( t0, t1 ) + 2;
        comp.rect.width = MIN( t0, (mat->width - _xc) * 2 );

        t0 = cvRound( fabs( length * sn ));
        t1 = cvRound( fabs( width * cs ));

        t0 = MAX( t0, t1 ) + 2;
        comp.rect.height = MIN( t0, (mat->height - _yc) * 2 );

        comp.rect.x = MAX( 0, _xc - comp.rect.width / 2 );
        comp.rect.y = MAX( 0, _yc - comp.rect.height / 2 );

        comp.rect.width = MIN( mat->width - comp.rect.x, comp.rect.width );
        comp.rect.height = MIN( mat->height - comp.rect.y, comp.rect.height );
        comp.area = (float) m00;
    }

    __END__;

    if( _comp )
        *_comp = comp;
    
    if( box )    //box里存的是目标的相关参数
    {
        box->size.height = (float)length;
        box->size.width = (float)width;
        box->angle = (float)(theta*180./CV_PI);
        box->center = cvPoint2D32f( comp.rect.x + comp.rect.width*0.5f,
                                    comp.rect.y + comp.rect.height*0.5f);
    }

    return itersUsed;   //返回迭代次数
}

将CamShift( )和MeanShift( )对比,可以看到这些差别

1、CamShift( )中将cur_win沿x和y方向拉大了2个TOLERANCE,MeanShift( )无此操作

2、CamShift( )考虑了目标发生旋转的情况,并给出了旋转角,MeanShift( )无此操作


3.实验代码及结果


来看看OpenCV自带的demo,原程序见D:\Programs_L\OpenCV249\sources\samples\cpp\camshiftdemo.cpp



#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <ctype.h>

using namespace cv;
using namespace std;

Mat image;

bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection;
int vmin = 10, vmax = 256, smin = 30;

static void onMouse( int event, int x, int y, int, void* )
{
    if( selectObject )
    {
        selection.x = MIN(x, origin.x);
        selection.y = MIN(y, origin.y);
        selection.width = std::abs(x - origin.x);
        selection.height = std::abs(y - origin.y);

        selection &= Rect(0, 0, image.cols, image.rows);
    }

    switch( event )
    {
    case CV_EVENT_LBUTTONDOWN:
        origin = Point(x,y);
        selection = Rect(x,y,0,0);
        selectObject = true;
        break;
    case CV_EVENT_LBUTTONUP:
        selectObject = false;
        if( selection.width > 0 && selection.height > 0 )
            trackObject = -1;
        break;
    }
}

static void help()
{
    cout << "\nThis is a demo that shows mean-shift based tracking\n"
            "You select a color objects such as your face and it tracks it.\n"
            "This reads from video camera (0 by default, or the camera number the user enters\n"
            "Usage: \n"
            "   ./camshiftdemo [camera number]\n";

    cout << "\n\nHot keys: \n"
            "\tESC - quit the program\n"
            "\tc - stop the tracking\n"
            "\tb - switch to/from backprojection view\n"
            "\th - show/hide object histogram\n"
            "\tp - pause video\n"
            "To initialize tracking, select the object with mouse\n";
}

const char* keys =
{
    "{1|  | 0 | camera number}"
};

int main( int argc, const char** argv )
{
    help();

    VideoCapture cap;
    Rect trackWindow;
    int hsize = 16;
    float hranges[] = {0,180};
    const float* phranges = hranges;
    CommandLineParser parser(argc, argv, keys);
    int camNum = parser.get<int>("1");

    cap.open(camNum);

    if( !cap.isOpened() )
    {
        help();
        cout << "***Could not initialize capturing...***\n";
        cout << "Current parameter's value: \n";
        parser.printParams();
        return -1;
    }

    namedWindow( "Histogram", 0 );
    namedWindow( "CamShift Demo", 0 );
    setMouseCallback( "CamShift Demo", onMouse, 0 );
    createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );
    createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );
    createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );

    Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
    bool paused = false;

    for(;;)
    {
        if( !paused )
        {
            cap >> frame;
            if( frame.empty() )
                break;
        }

        frame.copyTo(image);

        if( !paused )
        {
            cvtColor(image, hsv, COLOR_BGR2HSV);

            if( trackObject )
            {
                int _vmin = vmin, _vmax = vmax;

                inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
                        Scalar(180, 256, MAX(_vmin, _vmax)), mask);  //mask初始化
                int ch[] = {0, 0};
                hue.create(hsv.size(), hsv.depth());
                mixChannels(&hsv, 1, &hue, 1, ch, 1);  //提取h通道

                if( trackObject < 0 )
                {
                    Mat roi(hue, selection), maskroi(mask, selection);
                    calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);   //计算目标直方图
                    normalize(hist, hist, 0, 255, CV_MINMAX);

                    trackWindow = selection;
                    trackObject = 1;

                    histimg = Scalar::all(0);
                    int binW = histimg.cols / hsize;
                    Mat buf(1, hsize, CV_8UC3);
                    for( int i = 0; i < hsize; i++ )
                        buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);
                    cvtColor(buf, buf, CV_HSV2BGR);

                    for( int i = 0; i < hsize; i++ )
                    {
                        int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);
                        rectangle( histimg, Point(i*binW,histimg.rows),
                                   Point((i+1)*binW,histimg.rows - val),
                                   Scalar(buf.at<Vec3b>(i)), -1, 8 );
                    }
                }

                calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
                backproj &= mask;
                RotatedRect trackBox = CamShift(backproj, trackWindow,
                                    TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));
                if( trackWindow.area() <= 1 )
                {
                    int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;
                    trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
                                       trackWindow.x + r, trackWindow.y + r) &
                                  Rect(0, 0, cols, rows);
                }

                if( backprojMode )
                    cvtColor( backproj, image, COLOR_GRAY2BGR );
                ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );
				//rectangle( image, trackBox, Scalar(0,0,255), 3, CV_AA );
            }
        }
        else if( trackObject < 0 )
            paused = false;

        if( selectObject && selection.width > 0 && selection.height > 0 )
        {
            Mat roi(image, selection);
            bitwise_not(roi, roi);
        }

        imshow( "CamShift Demo", image );
        imshow( "Histogram", histimg );

        char c = (char)waitKey(10);
        if( c == 27 )
            break;
        switch(c)
        {
        case 'b':
            backprojMode = !backprojMode;
            break;
        case 'c':
            trackObject = 0;
            histimg = Scalar::all(0);
            break;
        case 'h':
            showHist = !showHist;
            if( !showHist )
                destroyWindow( "Histogram" );
            else
                namedWindow( "Histogram", 1 );
            break;
        case 'p':
            paused = !paused;
            break;
        default:
            ;
        }
    }

    return 0;
}

实验效果和之前的MeanShift差不多,图就懒得帖了。

用的时候感觉有时候甚至不如MeanShift。比如用meanshift跟踪时,手消失在人脸的位置后,meanshift会跟踪人脸,当人手再次从人脸位置出现时,会再跟踪手;而camshift被人脸干扰后,不会再跟踪手。原因未明。。。