一、建模与调参
在本节心电图预测中,是关于时间序列的学习,我们在之前了解数据模型之后,了解到这是一个关于回归问题的学习,我们要拟合出回归的效果
回归模型我们一直是机器学习中很重到的一部分,所以我们要大概的了解回归模型:
在学习地址中能看到回归模型简单学习,而且对集成学习,调参都是有很好的说明的。在这里就不在讲述了,我只添加了一些代码注释。
代码部分:
#导入相关的库
import pandas as pd
import numpy as np
from sklearn.metrics import f1_score #sklarn中混淆矩阵F1score分数
import os
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
节约资源函数啊,能节省一点是一点
# 这是一个减少内存开销的函数,每一组数据的类型确定后,,将一些不必要的内存给去掉,比如INT64的整形,
#我们决定没有必要,就可以将其中的数据使用astype变成int32
def reduce_mem_usage(df):
start_mem = df.memory_usage().sum() / 1024**2
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum() / 1024**2
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
# 读取数据
data = pd.read_csv('train.csv')
# 简单预处理
data_list = []
for items in data.values:
data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])
data = pd.DataFrame(np.array(data_list))
data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label']
data = reduce_mem_usage(data)
Memory usage of dataframe is 157.93 MB
Memory usage after optimization is: 39.67 MB
Decreased by 74.9%
使用函数节省了74.9%的内存
from sklearn.model_selection import KFold
# 分离数据集,方便进行交叉验证
X_train = data.drop(['id','label'], axis=1)#删除了ID与Label
y_train = data['label']
# 5折交叉验证
folds = 5
seed = 2021
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
自定义了f1score分数
F1分数(F1-score)是分类问题的一个衡量指标。一些多分类问题的机器学习竞赛,常常将F1-score作为最终测评的方法。它是精确率和召回率的调和平均数,最大为1,最小为0。
def f1_score_vali(preds, data_vali):
labels = data_vali.get_label()
preds = np.argmax(preds.reshape(4, -1), axis=0)
score_vali = f1_score(y_true=labels, y_pred=preds, average='macro')
return 'f1_score', score_vali, True
"""对训练集数据进行划分,分成训练集和验证集,
并进行相应的操作
test_size=0.2将数据切分成二八两份,作为验证集与训练集
"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
"learning_rate": 0.1,#学习率
"boosting": 'gbdt',
"lambda_l2": 0.1,
"max_depth": -1,#最大树深度
"num_leaves": 128,#最大树
"bagging_fraction": 0.8,
"feature_fraction": 0.8,
"metric": None,
"objective": "multiclass",
"num_class": 4,
"nthread": 10,
"verbose": -1,
}
"""使用训练集数据进行模型训练"""
model = lgb.train(params,
train_set=train_matrix,
valid_sets=valid_matrix,
num_boost_round=2000,
verbose_eval=50,
early_stopping_rounds=200,
feval=f1_score_vali)
Training until validation scores don't improve for 200 rounds
[50] valid_0's multi_logloss: 0.0494395 valid_0's f1_score: 0.958305
[100] valid_0's multi_logloss: 0.0449485 valid_0's f1_score: 0.965319
[150] valid_0's multi_logloss: 0.0464121 valid_0's f1_score: 0.96852
[200] valid_0's multi_logloss: 0.0481486 valid_0's f1_score: 0.969897
[250] valid_0's multi_logloss: 0.0494213 valid_0's f1_score: 0.969932
Early stopping, best iteration is:
[85] valid_0's multi_logloss: 0.044785 valid_0's f1_score: 0.963145
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
preds = np.argmax(val_pre_lgb, axis=1)
score = f1_score(y_true=y_val, y_pred=preds, average='macro')
print('未调参前lightgbm单模型在验证集上的f1:{}'.format(score))
未调参前lightgbm单模型在验证集上的f1:0.9631447591337778
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
print('************************************ {} ************************************'.format(str(i+1)))
X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
"learning_rate": 0.1,
"boosting": 'gbdt',
"lambda_l2": 0.1,
"max_depth": -1,
"num_leaves": 128,
"bagging_fraction": 0.8,
"feature_fraction": 0.8,
"metric": None,
"objective": "multiclass",
"num_class": 4,
"nthread": 10,
"verbose": -1,
}
model = lgb.train(params,
train_set=train_matrix,
valid_sets=valid_matrix,
num_boost_round=2000,
verbose_eval=100,
early_stopping_rounds=200,
feval=f1_score_vali)
val_pred = model.predict(X_val, num_iteration=model.best_iteration)
val_pred = np.argmax(val_pred, axis=1)
cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
************************************ 1 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0408155 valid_0's f1_score: 0.966797
[200] valid_0's multi_logloss: 0.0437957 valid_0's f1_score: 0.971239
Early stopping, best iteration is:
[96] valid_0's multi_logloss: 0.0406453 valid_0's f1_score: 0.967452
[0.9674515729721614]
************************************ 2 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0472933 valid_0's f1_score: 0.965828
[200] valid_0's multi_logloss: 0.0514952 valid_0's f1_score: 0.968138
Early stopping, best iteration is:
[87] valid_0's multi_logloss: 0.0467472 valid_0's f1_score: 0.96567
[0.9674515729721614, 0.9656700872844327]
************************************ 3 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0378154 valid_0's f1_score: 0.971004
[200] valid_0's multi_logloss: 0.0405053 valid_0's f1_score: 0.973736
Early stopping, best iteration is:
[93] valid_0's multi_logloss: 0.037734 valid_0's f1_score: 0.970004
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769]
************************************ 4 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0495142 valid_0's f1_score: 0.967106
[200] valid_0's multi_logloss: 0.0542324 valid_0's f1_score: 0.969746
Early stopping, best iteration is:
[84] valid_0's multi_logloss: 0.0490886 valid_0's f1_score: 0.965566
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014]
************************************ 5 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0412544 valid_0's f1_score: 0.964054
[200] valid_0's multi_logloss: 0.0443025 valid_0's f1_score: 0.965507
Early stopping, best iteration is:
[96] valid_0's multi_logloss: 0.0411855 valid_0's f1_score: 0.963114
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_scotrainre_list:[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_score_mean:0.9663612141019279
lgb_score_std:0.0022854824074775683
二、调参
2.1、贪心调参
先使用当前对模型影响最大的参数进行调优,达到当前参数下的模型最优化,再使用对模型影响次之的参数进行调优,如此下去,直到所有的参数调整完毕。
这个方法的缺点就是可能会调到局部最优而不是全局最优,但是只需要一步一步的进行参数最优化调试即可,容易理解。
from sklearn.model_selection import cross_val_score
from lightgbm.sklearn import LGBMRegressor# 调objective
best_obj = dict()
objective=["regression"]
for obj in objective:
model = LGBMRegressor(objective=obj)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
best_obj[obj] = score
# num_leaves
best_leaves = dict()
for leaves in num_leaves:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
best_leaves[leaves] = score
# max_depth
best_depth = dict()
for depth in max_depth:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
max_depth=depth)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
best_depth[depth] = score
"""
可依次将模型的参数通过上面的方式进行调整优化,并且通过可视化观察在每一个最优参数下模型的得分情况
"""
2.2、 网格搜索
sklearn 提供GridSearchCV用于进行网格搜索,只需要把模型的参数输进去,就能给出最优化的结果和参数。相比起贪心调参,网格搜索的结果会更优,但是网格搜索只适合于小数据集,一旦数据的量级上去了,很难得出结果。(比较暴力,浪费时间)
网格搜索的思想非常简单,比如你有2个超参数需要去选择,那你就把所有的超参数选择列出来分别做排列组合。然后针对每组超参数分别建立一个模型,然后选择测试误差最小的那组超参数。换句话说,我们需要从超参数空间中寻找最优的超参数,很像一个网格中找到一个最优的节点,因此叫网格搜索。
"""通过网格搜索确定最优参数"""
from sklearn.model_selection import GridSearchCV
def get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=31, max_depth=-1, bagging_fraction=1.0,
feature_fraction=1.0, bagging_freq=0, min_data_in_leaf=20, min_child_weight=0.001,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=None):
# 设置5折交叉验证
cv_fold = KFold(n_splits=5, shuffle=True, random_state=2021)
model_lgb = lgb.LGBMClassifier(learning_rate=learning_rate,
n_estimators=n_estimators,
num_leaves=num_leaves,
max_depth=max_depth,
bagging_fraction=bagging_fraction,
feature_fraction=feature_fraction,
bagging_freq=bagging_freq,
min_data_in_leaf=min_data_in_leaf,
min_child_weight=min_child_weight,
min_split_gain=min_split_gain,
reg_lambda=reg_lambda,
reg_alpha=reg_alpha,
n_jobs= 8
)
f1 = make_scorer(f1_score, average='micro')
grid_search = GridSearchCV(estimator=model_lgb,
cv=cv_fold,
param_grid=param_grid,
scoring=f1
)
grid_search.fit(X_train, y_train)
print('模型当前最优参数为:{}'.format(grid_search.best_params_))
print('模型当前最优得分为:{}'.format(grid_search.best_score_))
2.3、贝叶斯调参
贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。
安装贝叶斯调参
pip install bayesian-optimization
具体代码就不说了。未运行出来。
这是调参对整体模型的性能影响:
参数对random forest影响:
参数对Gradient Tree Boosting模型参数影响:
有的时候调参结果并未发生太多变化,需要回去特征处理,这样可能 会有意想不到结果。