实验目的

任意选择分类算法,实现乳腺癌分类。要求所有分类算法均自己实现。

下图是一个良性样本:

医学图像分类的小样本学习 医学图像分类算法_神经网络


下图是一个恶性样本:

医学图像分类的小样本学习 医学图像分类算法_深度学习_02

实验过程

由于能力和精力有限,我并没有选用CNN模型作为分类器。一方面是因为不借助PyTorch框架实现CNN对我来说过于困难,另一方面是因为本次课内实验提供的数据量太小,我觉得没有必要通过卷积神经网络来进行分类,故本次实验选用了相对简单的全连接神经网络实现。

①数据集的读取

本次实验的数据集正类样本和负类样本存放于两个不同的目录,因此可以调用Python的os模块,列举出目录中的所有文件并进行读取,作为数据集的特征。经过观察各图片的命名,可以发现所有的正类样本命名均为SOB_B_...,负类样本命名均为SOB_M_...,故可以从文件名入手,以下划线作为分隔符对文件名运用split方法,通过索引为1的元素(BM)来确定数据样本的标签。每读取一个样本,就将其加入dataset列表,便于后续划分训练集和验证集。

def read_data(self):
    dataset = []
    for dir_name in self.dir_names:
        for filename in os.listdir(r'./data/' + dir_name):
            img = cv2.imread(r'./data/' + dir_name + '/' + filename)
            label = 0 if filename.split('_')[1] == 'B' else 1
            dataset.append([img, label])
    return dataset

②数据集的划分

根据设定的test_size参数来划分出训练集和验证集。划分前通过random.shuffle方法对数据集洗牌,确定训练集和测试集大小后通过切片的方式进行划分,进一步提取出对应的特征和标签。对于数据样本的特征,输入网络时可将图像三个通道的像素展平,但这样可能会丢失一些上下相邻像素点之间的关联

def train_test_split(self, dataset):
    random.shuffle(dataset)
    data_len = len(dataset)
    test_len = int(data_len * self.test_size)
    train_len = data_len - test_len
    train, test = dataset[:train_len], dataset[train_len:]
    X_train = np.array([i[0] for i in train])
    y_train = np.array([[i[1]] for i in train]).reshape(1, -1)
    X_test = np.array([i[0] for i in test])
    y_test = np.array([[i[1]] for i in test]).reshape(1, -1)
    X_train = X_train.reshape((X_train.shape[0], -1)).T
    X_test = X_test.reshape((X_test.shape[0], -1)).T
    return X_train, X_test, y_train, y_test

③全连接神经网络

编写my_nn类实现全连接神经网络,从本质上来说是通过训练得到每两层之间的权重和偏置(即W1b1W2b2),训练之前应对其进行随机初始化。神经网络的训练过程可以分为前向传播反向传播。在前向传播中,设置隐藏层后使用tanh函数激活,输出结果使用sigmoid函数(调用scipy.special.expit实现)映射到 医学图像分类的小样本学习 医学图像分类算法_分类_03 区间。反向传播则是对矩阵求导,通过梯度下降法优化网络参数。

def init_parameters(self):
    W1 = np.random.randn(self.hidden_layer, self.input_layer) * 0.01
    b1 = np.zeros((self.hidden_layer, 1))
    W2 = np.random.randn(self.output_layer, self.hidden_layer) * 0.01
    b2 = np.zeros((self.output_layer, 1))
    return W1, W2, b1, b2

def tanh(self, x):
    return 2 / (1 + np.exp(-2 * x)) - 1

def forward(self, W1, W2, b1, b2, x):
    z1 = np.dot(W1, x) + b1
    a1 = self.tanh(z1)
    z2 = np.dot(W2, a1) + b2
    y_hat = expit(z2)
    return y_hat, a1

def backward(self, y_hat, a1, W2, N):
    dz2 = (-1 / N) * (self.y * (1 - y_hat) - y_hat * (1 - self.y))
    dW2 = np.dot(dz2, a1.T)
    db2 = dz2.sum(axis=1, keepdims=True)
    dz1 = np.dot(W2.T, dz2) * (1 - a1 ** 2)
    dW1 = np.dot(dz1, self.X.T)
    db1 = dz1.sum(axis=1, keepdims=True)
    return {'dW2': dW2, 'db2': db2, 'dW1': dW1, 'db1': db1}

def optim_GD(self, W1, W2, b1, b2, lr, grids):
    W1 -= lr * grids['dW1']
    W2 -= lr * grids['dW2']
    b1 -= lr * grids['db1']
    b2 -= lr * grids['db2']
    return W1, W2, b1, b2

本次实验的神经网络设置隐藏层神经元数量为16,训练迭代次数为2000,学习率为0.1,损失函数选择交叉熵损失函数。

完整代码实现

项目结构如下图所示:

医学图像分类的小样本学习 医学图像分类算法_神经网络_04

my_nn.py

import os
import random

import cv2
import numpy as np
from scipy.special import expit


class my_nn:
    def __init__(self, X, y, hidden_layer, iters, lr):
        self.X = X
        self.y = y
        self.input_layer = self.X.shape[0]
        self.output_layer = self.y.shape[0]
        self.hidden_layer = hidden_layer
        self.iters = iters
        self.lr = lr

    def init_parameters(self):
        W1 = np.random.randn(self.hidden_layer, self.input_layer) * 0.01
        b1 = np.zeros((self.hidden_layer, 1))
        W2 = np.random.randn(self.output_layer, self.hidden_layer) * 0.01
        b2 = np.zeros((self.output_layer, 1))
        return W1, W2, b1, b2

    def tanh(self, x):
        return 2 / (1 + np.exp(-2 * x)) - 1

    def forward(self, W1, W2, b1, b2, x):
        z1 = np.dot(W1, x) + b1
        a1 = self.tanh(z1)
        z2 = np.dot(W2, a1) + b2
        y_hat = expit(z2)
        return y_hat, a1

    def backward(self, y_hat, a1, W2, N):
        dz2 = (-1 / N) * (self.y * (1 - y_hat) - y_hat * (1 - self.y))
        dW2 = np.dot(dz2, a1.T)
        db2 = dz2.sum(axis=1, keepdims=True)
        dz1 = np.dot(W2.T, dz2) * (1 - a1 ** 2)
        dW1 = np.dot(dz1, self.X.T)
        db1 = dz1.sum(axis=1, keepdims=True)
        return {'dW2': dW2, 'db2': db2, 'dW1': dW1, 'db1': db1}

    def optim_GD(self, W1, W2, b1, b2, lr, grids):
        W1 -= lr * grids['dW1']
        W2 -= lr * grids['dW2']
        b1 -= lr * grids['db1']
        b2 -= lr * grids['db2']
        return W1, W2, b1, b2

    def cross_entropy(self, y_hat, N):
        assert self.y.shape == y_hat.shape
        return (-1 / N) * (np.dot(self.y, np.log(y_hat.T)) + np.dot((1 - self.y), np.log((1 - y_hat).T)))

    def cal_acc(self, y, y_hat):
        y_hat = y_hat.T
        for i in range(len(y_hat)):
            y_hat[i] = 0 if y_hat[i] < 0.5 else 1
        acc = (np.dot(y, y_hat) + np.dot(1 - y, 1 - y_hat)) / float(len(y_hat))
        return acc, y_hat

    def fit(self):
        W1, W2, b1, b2 = self.init_parameters()
        print('-' * 40 + ' Train ' + '-' * 40)
        for i in range(1, self.iters + 1):
            y_hat, a1 = self.forward(W1, W2, b1, b2, self.X)
            if i % 50 == 0:
                cost = self.cross_entropy(y_hat, self.X.shape[1])[0][0]
                acc, _ = self.cal_acc(self.y, y_hat)
                acc = acc[0][0]
                print('[Train] Iter: {:<4d} | Loss: {:<6.4f} | Accuracy: {:<6.4f}'.format(i, cost, acc))
            grids = self.backward(y_hat, a1, W2, self.X.shape[1])
            W1, W2, b1, b2 = self.optim_GD(W1, W2, b1, b2, self.lr, grids)
        return {'W1': W1, 'W2': W2, 'b1': b1, 'b2': b2}

    def eval(self, X_test, y_test, parameters):
        W1 = parameters['W1']
        W2 = parameters['W2']
        b1 = parameters['b1']
        b2 = parameters['b2']
        y_pred, _ = self.forward(W1, W2, b1, b2, X_test)
        acc, y_pred = self.cal_acc(y_test, y_pred)
        acc = acc[0][0]
        print('-' * 40 + ' Eval ' + '-' * 40)
        print('[Eval] Accuracy: {:<6.4f}'.format(acc))
        return y_pred


class Dataset:
    def __init__(self, dir_names, test_size):
        self.dir_names = dir_names
        self.test_size = test_size

    def read_data(self):
        dataset = []
        for dir_name in self.dir_names:
            for filename in os.listdir(r'./data/' + dir_name):
                img = cv2.imread(r'./data/' + dir_name + '/' + filename)
                label = 0 if filename.split('_')[1] == 'B' else 1
                dataset.append([img, label])
        return dataset

    def train_test_split(self, dataset):
        random.shuffle(dataset)
        data_len = len(dataset)
        test_len = int(data_len * self.test_size)
        train_len = data_len - test_len
        train, test = dataset[:train_len], dataset[train_len:]
        X_train = np.array([i[0] for i in train])
        y_train = np.array([[i[1]] for i in train]).reshape(1, -1)
        X_test = np.array([i[0] for i in test])
        y_test = np.array([[i[1]] for i in test]).reshape(1, -1)
        X_train = X_train.reshape((X_train.shape[0], -1)).T
        X_test = X_test.reshape((X_test.shape[0], -1)).T
        return X_train, X_test, y_train, y_test

main.py

from my_nn import Dataset, my_nn

dir_names = ['benign', 'malignant']
dataset = Dataset(dir_names, 0.3)
X_train, X_test, y_train, y_test = dataset.train_test_split(dataset.read_data())

model = my_nn(X_train, y_train, 16, 2000, 0.1)
parameters = model.fit()
model.eval(X_test, y_test, parameters)

实验结果如下图所示:

医学图像分类的小样本学习 医学图像分类算法_python_05


由于只是一次课内实验,数据样本过少(正、负类样本各10张),很难通过分类的准确率来评判这个模型,但训练过程中损失值是在不断下降的。