4.6 Hive总结

  • 4.6.1 Hive的架构 39
  • 4.6.2 Hive和数据库比较 39
  • 4.6.3 内部表和外部表 39
  • 4.6.4 4个By区别 39
  • 4.6.5 窗口函数 40
  • 4.6.6 自定义UDF、UDTF 40
  • 4.6.7 Hive优化 41

4.6.1 Hive的架构

Hive入门与大数据分析实战 pdf_Hive

 

 

4.6.2 Hive和数据库比较

Hive 和数据库除了拥有类似的查询语言,再无类似之处。

1)数据存储位置

Hive 存储在 HDFS 。数据库将数据保存在块设备或者本地文件系统中。

2)数据更新

Hive中不建议对数据的改写。而数据库中的数据通常是需要经常进行修改的,

3)执行延迟

Hive 执行延迟较高。数据库的执行延迟较低。当然,这个是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。

4)数据规模

Hive支持很大规模的数据计算;数据库可以支持的数据规模较小。

 

4.6.3 内部表和外部表

1)管理表:当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据。

2)外部表:删除该表并不会删除掉原始数据,删除的是表的元数据

 

4.6.4 4个By区别

1)Sort By:分区内有序;

2)Order By:全局排序,只有一个Reducer;

3)Distrbute By:类似MR中Partition,进行分区,结合sort by使用。

4) Cluster By:当Distribute by和Sorts by字段相同时,可以使用Cluster by方式。Cluster by除了具有Distribute by的功能外还兼具Sort by的功能。但是排序只能是升序排序,不能指定排序规则为ASC或者DESC。

 

4.6.5 窗口函数

RANK() 排序相同时会重复,总数不会变

DENSE_RANK() 排序相同时会重复,总数会减少

ROW_NUMBER() 会根据顺序计算

1) OVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化

2)CURRENT ROW:当前行

3)n PRECEDING:往前n行数据

4) n FOLLOWING:往后n行数据

5)UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING表示到后面的终点

6) LAG(col,n):往前第n行数据

7)LEAD(col,n):往后第n行数据

8) NTILE(n):把有序分区中的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。注意:n必须为int类型。

 

4.6.6 自定义UDF、UDTF

在项目中是否自定义过UDF、UDTF函数,以及用他们处理了什么问题,及自定义步骤?

1)自定义过。

2)用UDF函数解析公共字段;用UDTF函数解析事件字段。

自定义UDF:继承UDF,重写evaluate方法

自定义UDTF:继承自GenericUDTF,重写3个方法:initialize(自定义输出的列名和类型),process(将结果返回forward(result)),close

为什么要自定义UDF/UDTF,因为自定义函数,可以自己埋点Log打印日志,出错或者数据异常,方便调试.

 

4.6.7 Hive优化

1MapJoin

如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join。容易发生数据倾斜。可以用MapJoin把小表全部加载到内存在map端进行join,避免reducer处理。

2)行列过滤

列处理:在SELECT中,只拿需要的列,如果有,尽量使用分区过滤,少用SELECT *。

行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在Where后面,那么就会先全表关联,之后再过滤。

3)采用分桶技术

4)采用分区技术

5合理设置Map数

(1)通常情况下,作业会通过input的目录产生一个或者多个map任务。

主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。

(2)是不是map数越多越好?

答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。

(3)是不是保证每个map处理接近128m的文件块,就高枕无忧了?

答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。

针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数和增加map数;

6小文件进行合并

在Map执行前合并小文件,减少Map数:CombineHiveInputFormat具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat没有对小文件合并功能。

7合理设置Reduce数

Reduce个数并不是越多越好

(1)过多的启动和初始化Reduce也会消耗时间和资源;

(2)另外,有多少个Reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

在设置Reduce个数的时候也需要考虑这两个原则:处理大数据量利用合适的Reduce数;使单个Reduce任务处理数据量大小要合适;

8常用参数

// 输出合并小文件

SET hive.merge.mapfiles = true; -- 默认true,在map-only任务结束时合并小文件

SET hive.merge.mapredfiles = true; -- 默认false,在map-reduce任务结束时合并小文件

SET hive.merge.size.per.task = 268435456; -- 默认256M

SET hive.merge.smallfiles.avgsize = 16777216; -- 当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge