目录

python 最小外接矩形,

轮廓矩形框:

旋转矩形和最小包围矩形求解

python 获取最大内接矩形方法2:

c++ opencv获取最大内接矩形


python 最小外接矩形,

最小外接矩形的顶点坐标:cv2.boxPoints

cnt = np.array([[data_0_x, data_0_y], [data_1_x, data_1_y], [data_2_x, data_2_y], [data_3_x, data_3_y]])  # 必须是array数组的形式
        rect = cv2.minAreaRect(cnt)  # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
        box = cv2.boxPoints(rect)  # 获取最小外接矩形的4个顶点坐标
        box = np.int0(box)
        cv2.drawContours(img, [box], 0, (255, 0, 0), 1)

轮廓矩形框:

cnt = np.array([[data_0_x, data_0_y], [data_1_x, data_1_y], [data_2_x, data_2_y], [data_3_x, data_3_y]])  # 必须是array数组的形式
ret=cv2.boundingRect(cnt)
x,y,w,h=ret

旋转矩形和最小包围矩形求解

在 OpenCV 中,寻找一个多边形的最大内接矩形并不直接支持。但是你可以使用旋转矩形(RotatedRect)和最小包围矩形(minAreaRect)的概念来解决这个问题。

基本的思路是这样的:

  1. 找到多边形的最小包围矩形(这个矩形可能是旋转的)。
  2. 旋转多边形,使得最小包围矩形与坐标轴对齐。
  3. 在旋转后的多边形中找到最大的内接矩形。

这是一个基本的 Python 和 OpenCV 代码实现:

import cv2
import numpy as np

def max_area_rect_in_poly(poly):
    # Find minimum area rectangle
    rect = cv2.minAreaRect(poly)
    box = cv2.boxPoints(rect)
    box = np.int0(box)

    # Rotate polygon to align minimum area rectangle with axis
    angle = rect[-1]
    if angle < -45:
        angle = (90 + angle)
    else:
        angle = -angle
    (h, w) = (poly.shape[0], poly.shape[1])
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    poly = cv2.warpAffine(poly, M, (w, h))

    # Find maximum area rectangle in rotated polygon
    # Here you can use a brute force method to find the maximum area rectangle.
    # This can be a complex problem depending on the shape of your polygon.

    return max_rect

# Example usage:
poly = np.array([[10,10], [50,10], [50,30], [30,50], [10,30]], dtype=np.int32)
max_rect = max_area_rect_in_poly(poly)

python 获取最大内接矩形方法2:

原文链接:

import numpy as np
def get_max_inner_rectangles(matrix_np: np.ndarray, rectangle_bbox: list, area_value: int, result_list: list,
                             cur_area: float = float('inf')) -> list:
    """
    递归获取空间的多个内接矩形
    Args:
        matrix_np: 包含空间的底图
        rectangle_bbox: 空间的外接矩形
        area_value: 最小面积阈值
        result_list: 内接矩形列表
        cur_area: 当前矩形的面积
    Returns:
        result_list: 内接矩形列表
    """
    xmin, ymin, xmax, ymax = rectangle_bbox
    crop_img = matrix_np[ymin:ymax, xmin:xmax]  # 通过最大外接矩形,crop包含该空间的区域,优化速度
    matrix_list = crop_img.tolist()

    row = len(matrix_list)
    col = len(matrix_list[0])
    height = [0] * (col + 2)
    res = 0  # 记录矩形内像素值相加后的最大值
    bbox_rec = None  # 最大内接矩形bbox
    for i in range(row):
        stack = []  # 利用栈的特性获取最大矩形区域
        for j in range(col + 2):
            if 1 <= j <= col:
                if matrix_list[i][j - 1] == 255:
                    height[j] += 1
                else:
                    height[j] = 0
            # 精髓代码块 计算最大内接矩形 并计算最大值
            while stack and height[stack[-1]] > height[j]:
                cur = stack.pop()
                if res < (j - stack[-1] - 1) * height[cur]:
                    res = (j - stack[-1] - 1) * height[cur]
                    bbox_rec = [stack[-1], i - height[cur], j, i]
            stack.append(j)

    # 递归停止条件,1.最大内接矩形面积小于阈值;2. 没有最大内接矩形
    if cur_area < area_value or not bbox_rec:
        return result_list
    # 映射到原图中的位置
    src_min_x = xmin + bbox_rec[0]
    src_min_y = ymin + bbox_rec[1]
    src_max_x = xmin + bbox_rec[2]
    src_max_y = ymin + bbox_rec[3]
    bbox_src_position = [src_min_x, src_min_y, src_max_x, src_max_y]
    # 转成np格式,并将已经找到的最大内接矩形涂黑
    bbox_cnt = [[bbox_src_position[0], bbox_src_position[1]], 
                [bbox_src_position[2], bbox_src_position[1]], 
                [bbox_src_position[2], bbox_src_position[3]], 
                [bbox_src_position[0], bbox_src_position[3]]]
    contour_cur_np = np.array(bbox_cnt).reshape(-1, 1, 2)
    cv2.polylines(matrix_np, [contour_cur_np], 1, 0)
    cv2.fillPoly(matrix_np, [contour_cur_np], 0)
    cur_area =  (bbox_rec[2] - bbox_rec[0]) * (bbox_rec[3] - bbox_rec[1])
    if cur_area > area_value:
        result_list.append(bbox_src_position)
    # 递归获取剩下的内接矩形
    get_max_inner_rectangles(matrix_np, rectangle_bbox, area_value, result_list, cur_area)

    return result_list
x, y, w, h = cv2.boundingRect(cnt_final.reshape(-1,1,2))
cnt_bbox = [x, y,  x + w, y + h]
res_list = get_max_inner_rectangles(img, cnt_bbox, 100, [])
res_list = sorted(res_list, key=lambda _: (_[2] -_[0]) *(_[3] -_[1]), reverse=True)
res = res_list[0]
————————————————

def drawInRectgle(img, cont, cX, cY, x_min, x_max, y_min, y_max):
            """绘制不规则最大内接正矩形"""
            # img 对应的是原图, 四个极值坐标对应的是最大外接矩形的四个顶点
            c = cont  # 单个轮廓
            # print(c)
            range_x, range_y = x_max - x_min, y_max - y_min   # 轮廓的X,Y的范围
            x1, x2, y1, y2 = cX, cX, cY, cY     # 中心扩散矩形的四个顶点x,y
            cnt_range, radio = 0, 0
            shape_flag = 1                      # 1:轮廓X轴方向比Y长;0:轮廓Y轴方向比X长
            if range_x > range_y:                     # 判断轮廓 X方向更长
                radio, shape_flag = int(range_x / range_y), 1
                range_x_left = cX - x_min
                range_x_right = x_max - cX
                if range_x_left >= range_x_right:   # 取轴更长范围作for循环
                    cnt_range = int(range_x_left)
                if range_x_left < range_x_right:
                    cnt_range = int(range_x_right)
            else:                                   # 判断轮廓 Y方向更长
                radio, shape_flag = int(range_y / range_x), 0
                range_y_top = cY - y_min
                range_y_bottom = y_max - cY
                if range_y_top >= range_y_bottom:   # 取轴更长范围作for循环
                    cnt_range = int(range_y_top)
                if range_y_top < range_y_bottom:
                    cnt_range = int(range_y_bottom)
            print("X radio Y: %d " % radio)
            print("---------new drawing range: %d-------------------------------------" % cnt_range)
            flag_x1, flag_x2, flag_y1, flag_y2 = False, False, False, False
            radio = 5       # 暂时设5,统一比例X:Y=5:1 因为发现某些会出现X:Y=4:1, 某些会出现X:Y=5:1
            if shape_flag == 1:
                radio_x = radio - 1
                radio_y = 1
            else:
                radio_x = 1
                radio_y = radio - 1
            for ix in range(1, cnt_range, 1):      # X方向延展,假设X:Y=3:1,那延展步进值X:Y=3:1
                # 第二象限延展
                if flag_y1 == False:
                    y1 -= 1 * radio_y       # 假设X:Y=1:1,轮廓XY方向长度接近,可理解为延展步进X:Y=1:1
                    p_x1y1 = cv.pointPolygonTest(c, (x1, y1), False)
                    p_x2y1 = cv.pointPolygonTest(c, (x2, y1), False)
                    if p_x1y1 <= 0 or y1 <= y_min or p_x2y1 <= 0:  # 在轮廓外,只进行y运算,说明y超出范围
                        for count in range(0, radio_y - 1, 1):    # 最长返回步进延展
                            y1 += 1     # y超出, 步进返回
                            p_x1y1 = cv.pointPolygonTest(c, (x1, y1), False)
                            if p_x1y1 <= 0 or y1 <= y_min or p_x2y1 <= 0:
                                pass
                            else:
                                break
                        # print("y1 = %d, P=%d" % (y1, p_x1y1))
                        flag_y1 = True

                if flag_x1 == False:
                    x1 -= 1 * radio_x
                    p_x1y1 = cv.pointPolygonTest(c, (x1, y1), False)    # 满足第二象限的要求,像素都在轮廓内
                    p_x1y2 = cv.pointPolygonTest(c, (x1, y2), False)    # 满足第三象限的要求,像素都在轮廓内
                    if p_x1y1 <= 0 or x1 <= x_min or p_x1y2 <= 0:       # 若X超出轮廓范围
                        # x1 += 1  # x超出, 返回原点
                        for count in range(0, radio_x-1, 1):       #
                            x1 += 1         # x超出, 步进返回
                            p_x1y1 = cv.pointPolygonTest(c, (x1, y1), False)  # 满足第二象限的要求,像素都在轮廓内
                            p_x1y2 = cv.pointPolygonTest(c, (x1, y2), False)  # 满足第三象限的要求,像素都在轮廓内
                            if p_x1y1 <= 0 or x1 <= x_min or p_x1y2 <= 0:
                                pass
                            else:
                                break
                        # print("x1 = %d, P=%d" % (x1, p_x1y1))
                        flag_x1 = True              # X轴像左延展达到轮廓边界,标志=True
                # 第三象限延展
                if flag_y2 == False:
                    y2 += 1 * radio_y
                    p_x1y2 = cv.pointPolygonTest(c, (x1, y2), False)
                    p_x2y2 = cv.pointPolygonTest(c, (x2, y2), False)
                    if p_x1y2 <= 0 or y2 >= y_max or p_x2y2 <= 0:  # 在轮廓外,只进行y运算,说明y超出范围
                        for count in range(0, radio_y - 1, 1):  # 最长返回步进延展
                            y2 -= 1     # y超出, 返回原点
                            p_x1y2 = cv.pointPolygonTest(c, (x1, y2), False)
                            if p_x1y2 <= 0 or y2 >= y_max or p_x2y2 <= 0:  # 在轮廓外,只进行y运算,说明y超出范围
                                pass
                            else:
                                break
                        # print("y2 = %d, P=%d" % (y2, p_x1y2))
                        flag_y2 = True              # Y轴像左延展达到轮廓边界,标志=True
                # 第一象限延展
                if flag_x2 == False:
                    x2 += 1 * radio_x
                    p_x2y1 = cv.pointPolygonTest(c, (x2, y1), False)    # 满足第一象限的要求,像素都在轮廓内
                    p_x2y2 = cv.pointPolygonTest(c, (x2, y2), False)    # 满足第四象限的要求,像素都在轮廓内
                    if p_x2y1 <= 0 or x2 >= x_max or p_x2y2 <= 0:
                        for count in range(0, radio_x - 1, 1):  # 最长返回步进延展
                            x2 -= 1     # x超出, 返回原点
                            p_x2y1 = cv.pointPolygonTest(c, (x2, y1), False)  # 满足第一象限的要求,像素都在轮廓内
                            p_x2y2 = cv.pointPolygonTest(c, (x2, y2), False)  # 满足第四象限的要求,像素都在轮廓内
                            if p_x2y1 <= 0 or x2 >= x_max or p_x2y2 <= 0:
                                pass
                            elif p_x2y2 > 0:
                                break
                        # print("x2 = %d, P=%d" % (x2, p_x2y1))
                        flag_x2 = True
                if flag_y1 and flag_x1 and flag_y2 and flag_x2:
                    print("(x1,y1)=(%d,%d)" % (x1, y1))
                    print("(x2,y2)=(%d,%d)" % (x2, y2))
                    break
            # cv.line(img, (x1,y1), (x2,y1), (255, 0, 0))
            cv.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 1, 8)

            return x1, x2, y1, y2

c++ opencv获取最大内接矩形

#include<opencv2\opencv.hpp>
#include <iostream>
#include<vector>
 
using namespace cv;
using namespace std;
 
/**
* @brief expandEdge 扩展边界函数
* @param img:输入图像,单通道二值图,深度为8
* @param edge  边界数组,存放4条边界值
* @param edgeID 当前边界号
* @return 布尔值 确定当前边界是否可以扩展
*/
 
bool expandEdge(const Mat & img, int edge[], const int edgeID)
{
	//[1] --初始化参数
	int nc = img.cols;
	int nr = img.rows;
	switch (edgeID) {
	case 0:
		if (edge[0]>nr)
			return false;
		for (int i = edge[3]; i <= edge[1]; ++i)
		{
			if (img.at<uchar>(edge[0], i) == 255)//遇见255像素表明碰到边缘线
				return false;
		}
		edge[0]++;
		return true;
		break;
	case 1:
		if (edge[1]>nc)
			return false;
		for (int i = edge[2]; i <= edge[0]; ++i)
		{
			if (img.at<uchar>(i, edge[1]) == 255)//遇见255像素表明碰到边缘线
				return false;
		}
		edge[1]++;
		return true;
		break;
	case 2:
		if (edge[2]<0)
			return false;
		for (int i = edge[3]; i <= edge[1]; ++i)
		{
			if (img.at<uchar>(edge[2], i) == 255)//遇见255像素表明碰到边缘线
				return false;
		}
		edge[2]--;
		return true;
		break;
	case 3:
		if (edge[3]<0)
			return false;
		for (int i = edge[2]; i <= edge[0]; ++i)
		{
			if (img.at<uchar>(i, edge[3]) == 255)//遇见255像素表明碰到边缘线
				return false;
		}
		edge[3]--;
		return true;
		break;
	default:
		return false;
		break;
	}
 
}
 
/**
* @brief 求取连通区域内接矩
* @param img:输入图像,单通道二值图,深度为8
* @param center:最小外接矩的中心
* @return  最大内接矩形
* 基于中心扩展算法
*/
 
cv::Rect InSquare(Mat &img, const Point center)
{
	// --[1]参数检测
	if (img.empty() ||img.channels()>1|| img.depth()>8)
		return Rect();
	// --[2] 初始化变量
	int edge[4];
	edge[0] = center.y + 1;//top
	edge[1] = center.x + 1;//right
	edge[2] = center.y - 1;//bottom
	edge[3] = center.x - 1;//left
						   //[2]
						   // --[3]边界扩展(中心扩散法)
 
	bool EXPAND[4] = { 1,1,1,1 };//扩展标记位
	int n = 0;
	while (EXPAND[0] || EXPAND[1] || EXPAND[2] || EXPAND[3])
	{
		int edgeID = n % 4;
		EXPAND[edgeID] = expandEdge(img, edge, edgeID);
		n++;
	}
	//[3]
	//qDebug() << edge[0] << edge[1] << edge[2] << edge[3];
	Point tl = Point(edge[3], edge[0]);
	Point br = Point(edge[1], edge[2]);
	return Rect(tl, br);
}
 
 
 
 
int main()
{
 
	bool isExistence = false;
	float first_area = 0;
	/// 加载源图像
	Mat src;
	src = imread("cen.bmp", 1);
	//src = imread("C:\\Users\\Administrator\\Desktop\\测试图片\\xxx\\20190308152516.jpg",1);
	//src = imread("C:\\Users\\Administrator\\Desktop\\测试图片\\xx\\20190308151912.jpg",1);
	//src = imread("C:\\Users\\Administrator\\Desktop\\测试图像\\2\\BfImg17(x-247 y--91 z--666)-(492,280).jpg",1);
	cvtColor(src, src, CV_RGB2GRAY);
	threshold(src, src, 100, 255, THRESH_BINARY);
	Rect ccomp;
	Point center(src.cols / 2, src.rows / 2);
	//floodFill(src, center, Scalar(255, 255, 55), &ccomp, Scalar(20, 20, 20), Scalar(20, 20, 20));
	if (src.empty())
	{
		cout << "fali" << endl;
	}
	//resize(src, src, cv::Size(496, 460), cv::INTER_LINEAR);
	imshow("src", src);
	Rect rr = InSquare(src, center);
	rectangle(src, rr, Scalar(255), 1, 8);
	imshow("src2", src);
 
	waitKey(0);
	getchar();
	return 0;
}

原图和效果图:

点的最大外接矩形 python python opencv最小外接矩形_计算机视觉

点的最大外接矩形 python python opencv最小外接矩形_人工智能_02