因为某个需求,需要把原来pytorch的神经网络移植到华为的mindspore上
这边记录下遇到的坑
附上mindspore的官方教程:
https://mindspore.cn/tutorials/zh-CN/r2.0/advanced/compute_graph.html

这边附上需要移植的网络,以tensorflow和pytorch的形式移植

import numpy as np

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Embedding, Conv1D, multiply, GlobalMaxPool1D, Input, Activation


def Malconv(max_len=200000, win_size=500, vocab_size=256):
    inp = Input((max_len,))
    emb = Embedding(vocab_size, 8)(inp)

    conv1 = Conv1D(kernel_size=win_size, filters=128, strides=win_size, padding='same')(emb)
    conv2 = Conv1D(kernel_size=win_size, filters=128, strides=win_size, padding='same')(emb)
    a = Activation('sigmoid', name='sigmoid')(conv2)

    mul = multiply([conv1, a])
    a = Activation('relu', name='relu')(mul)
    p = GlobalMaxPool1D()(a)
    d = Dense(64)(p)
    out = Dense(1, activation='sigmoid')(d)

    return Model(inp, out)

pytorch是这种写法:

from typing import Optional
import torch
import torch.nn as nn
import mindspore.nn as nn
from torch import Tensor


class MalConv(nn.Module):
    """The MalConv model.

    References:
        - Edward Raff et al. 2018. Malware Detection by Eating a Whole EXE.
          https://arxiv.org/abs/1710.09435
    """

    def __init__(
        self,
        num_classes: int = 2,
        *,
        num_embeddings: int = 257,
        embedding_dim: int = 8,
        channels: int = 128,
        kernel_size: int = 512,
        stride: int = 512,
        padding_idx: Optional[int] = 256,
    ) -> None:
        super().__init__()

        self.num_classes = num_classes

        # By default, num_embeddings (257) = byte (0-255) + padding (256).
        self.embedding = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)

        self.conv1 = nn.Conv1d(embedding_dim, channels, kernel_size=kernel_size, stride=stride, bias=True)
        self.conv2 = nn.Conv1d(embedding_dim, channels, kernel_size=kernel_size, stride=stride, bias=True)

        self.max_pool = nn.AdaptiveMaxPool1d(1)

        self.fc = nn.Sequential(
            nn.Flatten(),
            nn.Linear(channels, channels),
            nn.ReLU(inplace=True),
            nn.Linear(channels, num_classes),
        )

    def _embed(self, x: Tensor) -> Tensor:
        # Perform embedding.
        x = self.embedding(x)

        # Treat embedding dimension as channel.
        x = x.permute(0, 2, 1)
        return x

    def _forward_embedded(self, x: Tensor) -> Tensor:
        # Perform gated convolution.
        x = self.conv1(x) * torch.sigmoid(self.conv2(x))

        # Perform global max pooling.
        x = self.max_pool(x)

        x = self.fc(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        x = self._embed(x)
        x = self._forward_embedded(x)
        return x

先看看mindspore怎么安装:
https://mindspore.cn/install

我先安装的是cpu版本的,顺便一提看着有三个版本,实际你能用的只有2.0.0版本,1.10.1里连pytorch的卷积nn.Conv1d都没有,Nightly更是连介绍这东西是啥的文档都没有。

pytorch模型转openvino pytorch模型转换 华为om_ide

pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0rc1/MindSpore/unified/x86_64/mindspore-2.0.0rc1-cp37-cp37m-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

pytorch模型转openvino pytorch模型转换 华为om_pytorch_02


安装完后,先看看介绍,mindspore是啥,最重要的先查看与pytorch的典型区别

https://www.mindspore.cn/docs/zh-CN/r2.0/migration_guide/typical_api_comparision.html这里点名批评下mindspore,看到这部分我自己都气笑了,在使用mindspore的时候它很贴心的告诉你 import mindspore.nn as nn 就可以代替import torch.nn as nn,听上去是不是很方便?要是完全函数名方法名重合那确实方便,但是很多时候这些函数名不完全一样,比如:
mindspore里名字变了但是功能没变,mindspore里名词没变,功能没变,但是参数变了,mindspore里名词没变参数没变但是功能变了,最后一种是最讨厌的,比如:

pytorch模型转openvino pytorch模型转换 华为om_ide_03


这个dropout和你原来使用的dropout是相反的没想到吧!如果不看文档直接掉坑里去

mindspore说我改动了一些方法,只有这样你才知道你用的是mindspore!

首先是搭建网络,原来的网络不算复杂,先看看mindspore的官方文档:
https://www.mindspore.cn/tutorials/zh-CN/r1.10/beginner/model.html 看看它写的样例网络:

Copyclass Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

看上去很像pytorch的网络,类似于把forward换成了construct
这里需要提一点,mindspore介绍里说的是图构建的时候会自动构建图,说是自动计算梯度啥的,不需要backward和优化器的step方法这样,我个人感觉是直接把forward换成construct了,但是这部分我没完全理解透,如果后面有变更我会再修改

我修改后的网络长这样:
首先原来继承的nn.module变成了cell类,这个是mindspore自己写的类,然后是一些替换,把forward换成construct,Linear换成Dense,Conv1d里的bias参数需要换成have_bias
关于api的替换最好还是查下官方的映射文档:
https://www.mindspore.cn/docs/zh-CN/r2.0/note/api_mapping/pytorch_api_mapping.html

from typing import Optional
import mindspore.nn as nn
from mindspore import Tensor
import mindspore

class MalConv(nn.Cell):
    """The MalConv model.

    References:
        - Edward Raff et al. 2018. Malware Detection by Eating a Whole EXE.
          https://arxiv.org/abs/1710.09435
    """

    def __init__(
        self,
        num_classes: int = 2,
        *,
        num_embeddings: int = 257,
        embedding_dim: int = 8,
        channels: int = 128,
        kernel_size: int = 512,
        stride: int = 512,
        padding_idx: Optional[int] = 256,
    ) -> None:
        super().__init__()

        self.num_classes = num_classes

        # By default, num_embeddings (257) = byte (0-255) + padding (256).
        self.embedding = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)

        self.conv1 = nn.Conv1d(embedding_dim, channels, kernel_size=kernel_size, stride=stride, has_bias=True)
        self.conv2 = nn.Conv1d(embedding_dim, channels, kernel_size=kernel_size, stride=stride, has_bias=True)

        self.maxpool = nn.AdaptiveMaxPool1d(1)

        self.fc = nn.SequentialCell(
            nn.Flatten(),
            nn.Dense(channels, channels),
            nn.ReLU(),
            nn.Dense(channels, num_classes),
            nn.Sigmoid()
        )

    def _embed(self, x: Tensor) -> Tensor:
        # Perform embedding.
        x = self.embedding(x)

        # Treat embedding dimension as channel.
        x = x.permute(0, 2, 1)
        return x

    def _forward_embedded(self, x: Tensor) -> Tensor:
        # Perform gated convolution.
        x = self.conv1(x) * mindspore.ops.sigmoid(self.conv2(x))

        # Perform global max pooling.
        x = self.maxpool(x)

        x = self.fc(x)
        return x

    def construct(self, x: Tensor) -> Tensor:
        x = self._embed(x)
        x = self._forward_embedded(x)
        return x
print(MalConv())

然后是需要构建数据集,这里我用了原来的数据集代码,和构建pytorch数据集的方法类似,我之前也写过一篇如何构建pytorch数据集的博客

官方文档:

https://www.mindspore.cn/tutorials/zh-CN/r2.0.0-alpha/beginner/dataset.html

pytorch模型转openvino pytorch模型转换 华为om_深度学习_04


附上我改后的代码:

需要注意mindspore的数据类型转换不像原来的pytorch那么兼容,如果报错提示数据类型不符合需要用类似np.int32(),np.astype(dtype=xxx)这些方法来对数据类型进行转换, 最后需要用GeneratorDataset来进行修饰,batch表示每次且多少个数据扔进pytorch进行训练,drop_remainder如果为False的话,最后剩下的数据如果小于batch大小的话会扔掉

dataset = ds.GeneratorDataset(MalConvDataSet(), column_names=["data", "label"])
dataset = dataset.batch(1, drop_remainder=True)
# 准备数据
from OSutils import getDataPath, loadJsonData
from ByteSequencesFeature import byte_sequences_feature
import numpy as np


def data_loader_multilabel(file_path: str, label_dict=None):
    """
    用于读取多标签的情况
    """
    if label_dict is None:
        label_dict = {}
    file_md5 = file_path.split('/')[-1]
    return byte_sequences_feature(file_path), label_dict.get(file_md5)


def data_loader(file_path: str, label_dict=None):
    """
    用于读取单标签的情况
    """
    if label_dict is None:
        label_dict = {}
    file_md5 = file_path.split('/')[-1]
    if file_md5 in label_dict:
        return byte_sequences_feature(file_path), 1
    else:
        return byte_sequences_feature(file_path), 0


def pred_data_loader(file_path: str, *args):
    """
    用于读取预测文件的情况
    """
    file_md5 = file_path.split('/')[-1]
    return byte_sequences_feature(file_path), file_md5


class MalConvDataSet(object):

    def __init__(self, black_samples_dir="black_samples/", white_samples_dir='white_samples/',
                 label_dict_path='label_dict.json', label_type="single", valid=False, valid_size=0.2, seed=207):

        self.file_list = getDataPath(black_samples_dir)
        self.loader = data_loader_multilabel

        if label_type == "single":
            self.loader = data_loader
            self.file_list += getDataPath(white_samples_dir)

        if label_type == "predict":
            self.label_dict = {}
            self.loader = pred_data_loader
        else:
            self.label_dict = loadJsonData(label_dict_path)
            np.random.seed(seed)
            np.random.shuffle(self.file_list)

        # 如果是需要测试集,就在原来的基础上分割
        # 因为设定了随机种子,所以分割的结果是一样的

        valid_cut = int((1 - valid_size) * len(self.file_list))
        if valid:
            self.file_list = self.file_list[valid_cut:]
        else:
            self.file_list = self.file_list[:valid_cut]

    def __getitem__(self, index):
        file_path = self.file_list[index]
        feature, label = self.loader(file_path, self.label_dict)
        return np.array(feature), np.int32(label)

    def __len__(self):
        return len(self.file_list)


if __name__ == "__main__":
    import mindspore.dataset as ds

    # corresponding to torch.utils.data.DataLoader(my_dataset)
    dataset = ds.GeneratorDataset(MalConvDataSet(), column_names=["data", "label"])
    dataset = dataset.batch(1, drop_remainder=True)

    for data in dataset:
        for data in data:
            print(data)

然后需要专门写个类配置启动环境,我这边用的是官方提供的模板,官方文档如下:
https://www.mindspore.cn/docs/zh-CN/r2.0.0-alpha/migration_guide/model_development/training_and_evaluation_procession.html?highlight=init_env

import mindspore as ms
from mindspore.communication.management import init, get_rank, get_group_size


class DefaultConfig(object):
    """
    设置默认的环境
    """
    seed = 1
    device_target = "CPU"
    context_mode = "graph"  # should be in ['graph', 'pynative']
    device_num = 1
    device_id = 0


def init_env(cfg=None):
    """初始化运行时环境."""
    if cfg is None:
        cfg = DefaultConfig()
    ms.set_seed(cfg.seed)
    # 如果device_target设置是None,利用框架自动获取device_target,否则使用设置的。
    if cfg.device_target != "None":
        if cfg.device_target not in ["Ascend", "GPU", "CPU"]:
            raise ValueError(f"Invalid device_target: {cfg.device_target}, "
                             f"should be in ['None', 'Ascend', 'GPU', 'CPU']")
        ms.set_context(device_target=cfg.device_target)

    # 配置运行模式,支持图模式和PYNATIVE模式
    if cfg.context_mode not in ["graph", "pynative"]:
        raise ValueError(f"Invalid context_mode: {cfg.context_mode}, "
                         f"should be in ['graph', 'pynative']")
    context_mode = ms.GRAPH_MODE if cfg.context_mode == "graph" else ms.PYNATIVE_MODE
    ms.set_context(mode=context_mode)

    cfg.device_target = ms.get_context("device_target")
    # 如果是CPU上运行的话,不配置多卡环境
    if cfg.device_target == "CPU":
        cfg.device_id = 0
        cfg.device_num = 1
        cfg.rank_id = 0

    # 设置运行时使用的卡
    if hasattr(cfg, "device_id") and isinstance(cfg.device_id, int):
        ms.set_context(device_id=cfg.device_id)

    if cfg.device_num > 1:
        # init方法用于多卡的初始化,不区分Ascend和GPU,get_group_size和get_rank方法只能在init后使用
        init()
        print("run distribute!", flush=True)
        group_size = get_group_size()
        if cfg.device_num != group_size:
            raise ValueError(f"the setting device_num: {cfg.device_num} not equal to the real group_size: {group_size}")
        cfg.rank_id = get_rank()
        ms.set_auto_parallel_context(parallel_mode=ms.ParallelMode.DATA_PARALLEL, gradients_mean=True)
        if hasattr(cfg, "all_reduce_fusion_config"):
            ms.set_auto_parallel_context(all_reduce_fusion_config=cfg.all_reduce_fusion_config)
    else:
        cfg.device_num = 1
        cfg.rank_id = 0
        print("run standalone!", flush=True)


if __name__ == "__main__":
    init_env()

最后就是启动环境,加载数据集和开始训练,我这边用了较少的训练集发现网络没有收敛,不知道是数据太少还是我迁移的时候少加了东西,我代码是这么写的:

from mindspore.train import Model, LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import nn
import mindspore.dataset as ds
from MalConv import MalConv as Net
from MalConvDataSet import MalConvDataSet
from SetEnvironment import init_env
import mindspore

def train_net():
    # 初始化运行时环境
    init_env()
    # 二分类任务
    task_type = "single"
    num_classes = 2

    # 多分类任务
    # task_type="multilabel"
    # num_classes=103

    total_step = 1
    max_step = 300
    display_step = 1
    test_step = 1000
    learning_rate = 0.0001
    log_file_path = 'train_log_' + task_type + '.txt'
    use_gpu = False
    model_path = 'Malconv_' + task_type + '.model'
    black_samples_dir = "black_samples/"
    white_samples_dir = 'white_samples/'
    label_dict_path = 'label_dict.json'
    valid_size = 0.2
    # 构造数据集对象
    dataset_ori = ds.GeneratorDataset(
        MalConvDataSet(black_samples_dir=black_samples_dir, white_samples_dir=white_samples_dir,
                       label_dict_path=label_dict_path, label_type=task_type, valid=False,
                       valid_size=valid_size, seed=207), shuffle=True, column_names=["data", "label"])
    dataset=dataset_ori.batch(2,drop_remainder=False)
    # 网络模型,和任务有关
    net = Net()
    # 损失函数,和任务有关
    loss = nn.CrossEntropyLoss()
    # 优化器实现,和任务有关
    optimizer = nn.Adam(net.trainable_params(), learning_rate)
    # 封装成Model
    model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
    # checkpoint保存
    config_ck = CheckpointConfig(save_checkpoint_steps=dataset.get_dataset_size(),
                                 keep_checkpoint_max=5)
    ckpt_cb = ModelCheckpoint(prefix="resnet", directory="./checkpoint", config=config_ck)
    # 模型训练,1轮
    model.train(1, dataset, callbacks=[LossMonitor(), TimeMonitor()])
    for each in dataset:
        print("data:",each[0],each[1])
        each_predict=model.predict(each[0])
        print("predict:",each_predict)




if __name__ == '__main__':
    train_net()

反正跑是能跑,要是有新发现或者发现错误我会回来更新

后续:mindspore,真没冤枉你!实际发现代码loss根本不降,问题在哪?

先一步步排查调用的api,又发现一个默认值设置不同的函数:

nn.Conv1d,这种默认值不同的方法是最需要注意的

pytorch模型转openvino pytorch模型转换 华为om_深度学习_05


结果loss还是没下降,查看代码怀疑是优化器没起作用,猜想优化器和loss的关联有可能放到@moxing_wrapper的注解里了,然后怀疑是文档写错了,点开model源码发现是有optimizer选项的,补上optimizer=optimizer后loss可以正常下降了

pytorch模型转openvino pytorch模型转换 华为om_人工智能_06

个人使用起来体验非常不好,官方文档居然还会出现这种问题,在我心里很扣分,特别是前面看介绍的时候文档里提到这个框架多牛,这个自动计算那个自动计算,我一开始认为是优化器可以通过train_paramernts直接进行关联的,毕竟前面写了那么多自动优化啥的,没想到真是文档的问题。。。。