参考

一、创建

  • 通过 java.util.Collection.stream() 方法用集合创建流
List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();
  • 2、使用java.util.Arrays.stream(T[] array)方法用数组创建流
int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);
  • 3、使用Stream的静态方法:of()、iterate()、generate()
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);

Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println); // 0 2 4 6 8 10

Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);
  • 输出结果:
0 3 6 9
0.6796156909271994
0.1914314208854283
0.8116932592396652
  • streamparallelStream 的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:

java 集合分组求和 map_List

  • 如果流中的数据量足够大,并行流可以加快处速度。
  • 除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:
Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();

二、Stream的使用

  • 在使用stream之前,先理解一个概念:Optional 。

Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。

  • 用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。
  • 案例使用的员工类
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));

class Person {
	private String name;  // 姓名
	private int salary; // 薪资
	private int age; // 年龄
	private String sex; //性别
	private String area;  // 地区

	// 构造方法
	public Person(String name, int salary, int age,String sex,String area) {
		this.name = name;
		this.salary = salary;
		this.age = age;
		this.sex = sex;
		this.area = area;
	}
	// 省略了get和set,请自行添加

}

2.1 遍历/匹配(foreach/find/match)



/**
     * 遍历/匹配(foreach/find/match)
     */
    @Test
    public void test6() {
        List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

        // 遍历输出符合条件的元素
        list.stream().filter(x -> x > 6).forEach(System.out::println);
        // 匹配第一个
        Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
        // 匹配任意(适用于并行流)
        Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
        // 是否包含符合特定条件的元素
        boolean anyMatch = list.stream().anyMatch(x -> x < 6);
        System.out.println("匹配第一个值:" + findFirst.get());
        System.out.println("匹配任意一个值:" + findAny.get());
        System.out.println("是否存在大于6的值:" + anyMatch);
    }

2.2 筛选(filter)

  • 筛选出Integer集合中大于7的元素,并打印出来
/**
     * 筛选(filter)
     * 筛选出Integer集合中大于7的元素,并打印出来
     */
    @Test
    public void test7() {
        List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
        Stream<Integer> stream = list.stream();
//        Stream<Integer> integerStream = stream.filter(x -> x > 7);
        stream.filter(x -> x > 7).forEach(System.out::println);
    }
  • 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集),后文有详细介绍。
/**
     * 筛选(filter)
     * 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集),后文有详细介绍。
     */
    @Test
    public void test8() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
                .collect(Collectors.toList());
        System.out.print("高于8000的员工姓名:" + fiterList);
    }

2.3 聚合(max/min/count)

/**
     * 聚合(max/min/count)
     * 获取String集合中最长的元素。
     */
    @Test
    public void test9() {
        List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");
        Optional<String> max = list.stream().max(Comparator.comparing(String::length));
        System.out.println("最长的字符串:" + max.get());
    }

    /**
     * 聚合(max/min/count)
     * 获取Integer集合中的最大值。
     */
    @Test
    public void test10() {
        List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

        // 自然排序
        Optional<Integer> max = list.stream().max(Integer::compareTo);
        // 自定义排序
        Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o1.compareTo(o2);
            }
        });
        System.out.println("自然排序的最大值:" + max.get());
        System.out.println("自定义排序的最大值:" + max2.get());
    }
    /**
     * 聚合(max/min/count)
     * 案例三:获取员工工资最高的人。
     */
    @Test
    public void test11() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
        System.out.println("员工工资最大值:" + max.get().getSalary());
    }
    /**
     * 聚合(max/min/count)
     * 案例四:计算Integer集合中大于6的元素的个数。
     */
    @Test
    public void test12() {
        List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

        long count = list.stream().filter(x -> x > 6).count();
        System.out.println("list中大于6的元素个数:" + count);
    }

2.4 映射(map/flatMap)

/**
     * 映射(map/flatMap)
     * 映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:
     * <p>
     * map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
     * flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
     * <p>
     * 案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。
     */
    @Test
    public void test13() {
        String[] strArr = {"abcd", "bcdd", "defde", "fTr"};
        List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

        List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
        List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

        System.out.println("每个元素大写:" + strList);
        System.out.println("每个元素+3:" + intListNew);
    }

    /**
     * 映射(map/flatMap)
     * 映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:
     * <p>
     * map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
     * flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
     * <p>
     * 案例二:将员工的薪资全部增加10000。
     */
    @Test
    public void test14() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        // 不改变原来员工集合的方式
        List<Person> personListNew = personList.stream().map(person -> {
            Person personNew = new Person(person.getName(), 0, 0, null, null);
            personNew.setSalary(person.getSalary() + 10000);
            return personNew;
        }).collect(Collectors.toList());
        System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
        System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

        // 改变原来员工集合的方式
        List<Person> personListNew2 = personList.stream().map(person -> {
            person.setSalary(person.getSalary() + 10000);
            return person;
        }).collect(Collectors.toList());
        System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
        System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());

    }

    /**
     * 映射(map/flatMap)
     * 映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:
     * <p>
     * map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
     * flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
     * <p>
     * 案例三:将两个字符数组合并成一个新的字符数组。
     */
    @Test
    public void test15() {
        List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
        List<String> listNew = list.stream().flatMap(s -> {
            // 将每个元素转换成一个stream
            String[] split = s.split(",");
            Stream<String> s2 = Arrays.stream(split);
            return s2;
        }).collect(Collectors.toList());

        System.out.println("处理前的集合:" + list);
        System.out.println("处理后的集合:" + listNew);
    }

2.5 归约(reduce)

/**
     * 归约(reduce)
     * 归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
     * 案例一:求Integer集合的元素之和、乘积和最大值。
     */
    @Test
    public void test16() {
        List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
        // 求和方式1
        Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
        // 求和方式2
        Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
        // 求和方式3
        Integer sum3 = list.stream().reduce(0, Integer::sum);

        // 求乘积
        Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
        Integer reduce = list.stream().reduce(1, (x, y) -> x * y);

        // 求最大值方式1
        Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
        // 求最大值写法2
        Integer max2 = list.stream().reduce(1, Integer::max);

        System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
        System.out.println("list求积:" + product.get());
        System.out.println("list求max:" + max.get() + "," + max2);

    }

    /**
     * 归约(reduce)
     * 归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
     * 案例二:求所有员工的工资之和和最高工资。
     */
    @Test
    public void test17() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));
        personList.add(new Person("Owen", 9500, 25, "male", "New York"));
        personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

        // 求工资之和方式1:
        Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
        // 求工资之和方式2:
        Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
                (sum1, sum2) -> sum1 + sum2);
        // 求工资之和方式3:
        Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);

        // 求最高工资方式1:
        Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
                Integer::max);
        // 求最高工资方式2:
        Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
                (max1, max2) -> max1 > max2 ? max1 : max2);

        System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
        System.out.println("最高工资:" + maxSalary + "," + maxSalary2);


    }

2.6 收集(collect)

/**
     * 收集(collect)
     * collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
     * collect主要依赖java.util.stream.Collectors类内置的静态方法。
     * 归集(toList/toSet/toMap)
     * 因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。
     */
    @Test
    public void test18() {
        List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
        List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
        Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
        personList.add(new Person("Anni", 8200, 24, "female", "New York"));

        Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
                .collect(Collectors.toMap(Person::getName, p -> p));
        System.out.println("toList:" + listNew);
        System.out.println("toSet:" + set);
        System.out.println("toMap:" + map);

    }

2.7 统计(count/averaging)

/**
     * 统计(count/averaging)
     * Collectors提供了一系列用于数据统计的静态方法:
     * 
     * 计数:count
     * 平均值:averagingInt、averagingLong、averagingDouble
     * 最值:maxBy、minBy
     * 求和:summingInt、summingLong、summingDouble
     * 统计以上所有:summarizingInt、summarizingLong、summarizingDouble
     */
    @Test
    public void test19() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

        // 求总数
        Long count = personList.stream().collect(Collectors.counting());
        // 求平均工资
        Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
        // 求最高工资
        Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
        // 求工资之和
        Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
        // 一次性统计所有信息
        DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

        System.out.println("员工总数:" + count);
        System.out.println("员工平均工资:" + average);
        System.out.println("员工最高工资:" + max);
        System.out.println("员工工资总和:" + sum);
        System.out.println("员工工资所有统计:" + collect);
    }

2.8 分组(partitioningBy/groupingBy)

/**
     * 分组(partitioningBy/groupingBy)
     * 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
     * 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。
     * <p>
     * 案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
     */
    @Test
    public void test20() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, "male", "New York"));
        personList.add(new Person("Jack", 7000, "male", "Washington"));
        personList.add(new Person("Lily", 7800, "female", "Washington"));
        personList.add(new Person("Anni", 8200, "female", "New York"));
        personList.add(new Person("Owen", 9500, "male", "New York"));
        personList.add(new Person("Alisa", 7900, "female", "New York"));

        // 将员工按薪资是否高于8000分组
        Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
        // 将员工按性别分组
        Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
        // 将员工先按性别分组,再按地区分组
        Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
        System.out.println("员工按薪资是否大于8000分组情况:" + part);
        System.out.println("员工按性别分组情况:" + group);
        System.out.println("员工按性别、地区:" + group2);
    }

2.9 接合(joining)

/**
     * 接合(joining)
     * joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
     */
    @Test
    public void test21() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

        String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
        System.out.println("所有员工的姓名:" + names);
        List<String> list = Arrays.asList("A", "B", "C");
        String string = list.stream().collect(Collectors.joining("-"));
        System.out.println("拼接后的字符串:" + string);
    }

2.10 归约(reducing)

/**
     * 归约(reducing)
     * Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持
     */
    @Test
    public void test22() {
        List<Person> personList = new ArrayList<Person>();
        personList.add(new Person("Tom", 8900, 23, "male", "New York"));
        personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

        // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
        Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
        System.out.println("员工扣税薪资总和:" + sum);

        // stream的reduce
        Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
        System.out.println("员工薪资总和:" + sum2.get());
    }

2.11 排序(sorted)

/**
     * 排序(sorted)
     * sorted,中间操作。有两种排序:
     *
     * sorted():自然排序,流中元素需实现Comparable接口
     * sorted(Comparator com):Comparator排序器自定义排序
     *
     * 案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序
     */
    @Test
    public void test23() {
        List<Person> personList = new ArrayList<Person>();

        personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
        personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
        personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
        personList.add(new Person("Lily", 8800, 26, "male", "New York"));
        personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

        // 按工资升序排序(自然排序)
        List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
                .collect(Collectors.toList());
        // 按工资倒序排序
        List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
                .map(Person::getName).collect(Collectors.toList());
        // 先按工资再按年龄升序排序
        List<String> newList3 = personList.stream()
                .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
                .collect(Collectors.toList());
        // 先按工资再按年龄自定义排序(降序)
        List<String> newList4 = personList.stream().sorted((p1, p2) -> {
            if (p1.getSalary() == p2.getSalary()) {
                return p2.getAge() - p1.getAge();
            } else {
                return p2.getSalary() - p1.getSalary();
            }
        }).map(Person::getName).collect(Collectors.toList());

        System.out.println("按工资升序排序:" + newList);
        System.out.println("按工资降序排序:" + newList2);
        System.out.println("先按工资再按年龄升序排序:" + newList3);
        System.out.println("先按工资再按年龄自定义降序排序:" + newList4);

    }

2.12 提取/组合

/**
     * 提取/组合
     * 流也可以进行合并、去重、限制、跳过等操作。
     * distinct
     * skip
     * limit
     */
    @Test
    public void test24() {
        String[] arr1 = { "a", "b", "c", "d" };
        String[] arr2 = { "d", "e", "f", "g" };

        Stream<String> stream1 = Stream.of(arr1);
        Stream<String> stream2 = Stream.of(arr2);
        // concat:合并两个流 distinct:去重
        List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
        // limit:限制从流中获得前n个数据
        List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
        // skip:跳过前n个数据
        List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

        System.out.println("流合并:" + newList);
        System.out.println("limit:" + collect);
        System.out.println("skip:" + collect2);
    }