marginwidth="0" marginheight="0" scrolling="no" framespacing="0" vspace="0" hspace="0" frameborder="0" width="220" height="140" src="http://gg.pinggu.name/peixun.html?0819" style="word-wrap: break-word;"> 本帖最后由 Nicolle 于 2014-12-21 09:02 编辑 1. 简介 RapidMiner原名Yale,它是用于数据挖掘、机器学习、商业预测分析的开源计算环境。根据KDnuggets在2011年的一次投票显示,从使用率来看该软件比之R语言还要略胜一筹。因为其具备GUI特性,所以很适合于数据挖掘的初学者入门。 RapidMiner提供的数据挖掘和机器学习程序包括:数据加载和转换(ETL),数据预处理和可视化,建模,评估和部署。数据挖掘的流程是以XML文件加以描述,并通过一个图形用户界面显示出来。RapidMiner是由Java编程语言编写的,其中还集成了WEKA的学习器和评估方法,并可以与R语言进行协同工作。 2.学习资源 软件的帮助菜单中自带了26个tutorial,可以帮助用户进行基本入门。另外在sample有也有不错的案例数据和流程可供参考学习。从官方网站可以下载到一份简单的用户手册,另外还有相应的资源站提供了很好的视频教程。 3.基本概念 rapidminer中的功能均是通过连接各类算子(operataor)形成流程(process)来实现的,整个流程可以看做是工厂车间的生产线,输入原始数据,输入出模型结果。算子可以看做是执行某种具体功能的函数,不同算子有不同的输入输出特性。 大体上有这样几类算子:
|
预测性数据挖掘 预测分析与数据挖掘 rapidminer
转载本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。

提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章