一、flink状态原理

1.1 什么是flink中的状态?为什么需要状态管理?

flink运行计算任务的过程中,会有很多中间处理过程。在整个任务运行的过程中,中间存在着多个临时状态,比如说某些数据正在执行一个operator,但是只处理了一半数据,另外一般还没来得及处理,这也是一个状态。
假设运行过程中,由于某些原因,任务挂掉了,或者flink中的多个task中的一个task挂掉了,那么它在内存中的状态都会丢失,如果这时候我们没有存储中间计算的状态,那么就意味着重启这个计算任务时,需要从头开始将原来处理过的数据重新计算一遍。如果存储了中间状态,就可以恢复到中间状态,并从该状态开始继续执行任务。这就是状态管理的意义。所以需要一种机制去保存记录执行过程中的中间状态,这种机制就是状态管理机制。

1.2 flink中状态的分类

flink中包括两种基础状态:keyed state(keyed状态)和operator state(operator状态)

1.2.1 keyed状态

keyed状态总是与key一起,且只能用在keyedStream中。这个状态是跟特定的key绑定的,对KeyedStream流上的每一个key,可能都对应一个state。唯一组合成(operator--key,state)的形式。

1.2.2 operator状态

与Keyed State不同,Operator State跟一个特定operator的一个并发实例绑定,整个operator只对应一个state。相比较而言,在一个operator上,可能会有很多个key,从而对应多个keyed state。而且operator state可以应用于非keyed stream中。

举例来说,Flink中的Kafka Connector,就使用了operator state。它会在每个connector实例中,保存该实例中消费topic的所有(partition, offset)映射。

1.3 state的存在形式

所有state的存在形式有两种:managed(委托管理)和raw(原始)。
托管方式就是状态管理由flink提供的框架进行管理,通过flink状态管理框架提供的接口,来更新和管理状态的值。这里面包括用于存储状态数据的数据结构,现成的包装类等。

原始方式就是由用户自行管理状态具体的数据结构,框架在做checkpoint的时候(checkpoint是flink进行状态数据持久化存储的机制),使用byte[]来读写状态内容,对其内部数据结构一无所知。

通常在DataStream上的状态推荐使用托管的状态,当实现一个用户自定义的operator时,会使用到原始状态。一般来说,托管状态用的比较多。

1.4 managed 方式提供的接口

 

可用于存储状态数据的类如下:

ValueState<T>*这保留了一个可以更新和检索的值。即类型为T的单值状态。这个状态与对应的key绑定,是最简单的状态了。它可以通过update方法更新状态值,通过value()方法获取状态值。

ListState<T>*这保存了一个元素列表,即key上的状态值为一个列表。可以追加元素并检索Iterable所有当前存储的元素。可以通过add方法往列表中附加值;也可以通过get()方法返回一个Iterable<T>来遍历状态值。

ReducingState<T>*这保留了一个值,该值表示添加到状态的所有值的聚合。接口类似于ListState,但是添加的元素使用add(T)。每次调用add方法添加值的时候,会调用reduceFunction,最后合并到一个单一的状态值。

AggregatingState<IN, OUT>*这保留了一个值,该值表示添加到状态的所有值的聚合。和ReducingState不同的是,聚合类型可能与添加到状态的元素类型不同

FoldingState<T, ACC>*这保留了一个值,该值表示添加到状态的所有值的聚合。违背ReducingState,聚合类型可能与添加到状态的元素类型不同。接口类似于ListState但是添加的元素使用add(T)使用指定的FoldFunction.这个基本弃用,请用AggregatingState代替

MapState<UK, UV>*它保存了一个映射列表。可以将键值对放入状态并检索Iterable所有当前存储的映射。映射使用put(UK, UV)或putAll(Map<UK, UV>)添加元素。使用get(UK)获取元素。映射、键和值的可迭代视图可以分别使用entries(), keys()和values()

需要注意的是,以上所述的State对象,仅仅用于与状态进行交互(更新、删除、清空等),而真正的状态值,有可能是存在内存、磁盘、或者其他分布式存储系统中。相当于我们只是持有了这个状态的句柄(state handle)。

接下来看下,我们如何得到这个状态句柄。Flink通过StateDescriptor来定义一个状态。这是一个抽象类,内部定义了状态名称、类型、序列化器等基础信息。与上面的状态类型对应。如下:

ValueStateDescriptor
ListStateDescriptor
ReducingStateDescriptor
FoldingStateDescriptor
AggregatingStateDescriptor
MapStateDescriptor

二、使用flink状态管理的方式

2.1 使用状态管理基本流程

以keyed state为例,
1、首先,普通Function接口是不支持状态管理的,也就是一般故障的情况下,状态并没有保存下来,后面需要将所有数据进行重新计算。如果需要支持状态管理,那么我们需要继承实现 RichFunction类。基本常用的function,flink都再封装了对应的RichFunction接口给我们使用,比如普通function中的MapFunction,对应的RichFunction抽象类为RichMapFunction。命名方式对应关系很简单,基本就是 xxxFunciotn -->RichxxxFunction。

2、接着,需要在覆盖实现RichFunction中的对应的算子方法(如map、flatMap等),里面需要实现算子业务逻辑,并将对keyed state进行更新、管理。然后还要重写open方式,用于获取状态句柄。

2.2 使用keyed state例子

下面使用ValueState为例,实现RichFlatMapFunction接口:

public class CountWindowAverage extends RichFlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, Long>> {

    /**
     * ValueState状态句柄. 第一个值为count,第二个值为sum。
     */
    private transient ValueState<Tuple2<Long, Long>> sum;

    @Override
    public void flatMap(Tuple2<Long, Long> input, Collector<Tuple2<Long, Long>> out) throws Exception {
        // 获取当前状态值
        Tuple2<Long, Long> currentSum = sum.value();

        // 更新
        currentSum.f0 += 1;
        currentSum.f1 += input.f1;

        // 更新状态值
        sum.update(currentSum);

        // 如果count >=2 清空状态值,重新计算
        if (currentSum.f0 >= 2) {
            out.collect(new Tuple2<>(input.f0, currentSum.f1 / currentSum.f0));
            sum.clear();
        }
    }

    @Override
    public void open(Configuration config) {
        ValueStateDescriptor<Tuple2<Long, Long>> descriptor =
                new ValueStateDescriptor<>(
                        "average", // 状态名称
                        TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {}), // 当个状态数据的类型,这里是tuple,也就是元祖
                        Tuple2.of(0L, 0L)); // 状态默认值
        //获取状态句柄
        sum = getRuntimeContext().getState(descriptor);
    }
}

// 主程序
env.fromElements(Tuple2.of(1L, 3L), Tuple2.of(1L, 5L), Tuple2.of(1L, 7L), Tuple2.of(1L, 4L), Tuple2.of(1L, 2L))
        .keyBy(0)
        .flatMap(new CountWindowAverage())
        .print();

// the printed output will be (1,4) and (1,5)