模板匹配是在一幅图像中寻找一个特定目标的方法。这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否“相似”,当相似度足够高时,就认为找到了我们的目标。

程序中会用到 OpenCV 的函数包括:

void matchTemplate( InputArray image, InputArray templ,
                             OutputArray result, int method );

result 是一个矩阵,返回每一个点匹配的结果。

void minMaxLoc(InputArray src, CV_OUT double* minVal,
                       CV_OUT double* maxVal=0, CV_OUT Point* minLoc=0,
                       CV_OUT Point* maxLoc=0, InputArray mask=noArray());

这个函数可以在一个矩阵中寻找最大点或最小点,并将位置返回回来。

在具体介绍这两个函数之前呢,我们还要介绍一个概念,就是如何来评价两幅图像是否“相似”。

OpenCV 提供了 6 种计算两幅图像相似度的方法。

差值平方和匹配 CV_TM_SQDIFF

这类方法利用图像与模板各个像素差值的平方和来进行匹配,最好匹配为 0。 匹配越差,匹配值越大。

     

openCV中如何调用CLAHE算法 opencv example_OpenCV


标准化差值平方和匹配 CV_TM_SQDIFF_NORMED

这种标准化操作可以保证当模板和图像各个像素的亮度都乘上了同一个系数时,相关度不发生变化。

也就是说当 I(x,y)和T(x,y) 变为k×I(x,y)和k×T(x,y) 时,R(x,y)不发生变化。

      

openCV中如何调用CLAHE算法 opencv example_相似度_02


相关匹配 CV_TM_CCORR

这类方法采用模板和图像的互相关计算作为相似度的度量方法,所以较大的数表示匹配程度较高,0标识最坏的匹配效果。

      

openCV中如何调用CLAHE算法 opencv example_OpenCV_03


标准相关匹配 CV_TM_CCORR_NORMED

这个方法和 标准化差值平方和匹配 类似,都是去除了亮度线性变化对相似度计算的影响。可以保证图像和模板同时变亮或变暗k倍时结果不变。

       

openCV中如何调用CLAHE算法 opencv example_OpenCV_04


相关匹配 CV_TM_CCOEFF

这种方法也叫做相关匹配,但是和上面的 CV_TM_CCORR 匹配方法还是有不通过的。简单的说,这里是把图像和模板都减去了各自的平均值,使得这两幅图像都没有直流分量。

        

openCV中如何调用CLAHE算法 opencv example_OpenCV_05


标准相关匹配 CV_TM_CCOEFF_NORMED

这是 OpenCV 支持的最复杂的一种相似度算法。这里的相关运算就是数理统计学科的相关系数计算方法。具体的说,就是在减去了各自的平均值之外,还要各自除以各自的方差。经过减去平均值和除以方差这么两步操作之后,无论是我们的待检图像还是模板都被标准化了,这样可以保证图像和模板分别改变光照亮不影响计算结果。计算出的相关系数被限制在了 -1 到 1 之间,1 表示完全相同,-1 表示两幅图像的亮度正好相反,0 表示两幅图像之间没有线性关系。

         

openCV中如何调用CLAHE算法 opencv example_OpenCV_06

代码:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

using namespace cv;

int main(int argc, char *argv[])
{
    Mat image = imread("2.jpg");
    Mat templateImage = imread("1.png"); 

    int result_cols =  image.cols - templateImage.cols + 1;
    int result_rows = image.rows - templateImage.rows + 1;

    Mat result = Mat( result_cols, result_rows, CV_32FC1 );

    matchTemplate( image, templateImage, result, CV_TM_CCOEFF );

    double minVal, maxVal;
    Point minLoc, maxLoc, matchLoc;
    minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
    matchLoc = maxLoc;

    rectangle( image, Rect(matchLoc, Size(templateImage.cols, templateImage.rows) ), Scalar(0, 0, 255), 2, 8, 0 );

    imshow("", image);

    waitKey(0);
    return 0;
}

openCV中如何调用CLAHE算法 opencv example_相关匹配_07