排序,搜索

  • 归并排序
  • 归并排序的分析
  • 代码实现
  • 时间复杂度
  • 排序总结
  • 搜索
  • 二分法查找
  • 二分法查找实现
  • (非递归实现)
  • (递归实现)
  • 时间复杂度


归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

归并排序的分析

Python 2个数组合并extend python合并两个数组并排序_时间复杂度

代码实现

def merge_sort(alist):
    """归并排序"""
    n = len(alist)
    if n <= 1:
        return alist
    mid = n//2

    # left 采用归并排序后形成的有序的新的列表
    left_li = merge_sort(alist[:mid])

    # right 采用归并排序后形成的有序的新的列表
    right_li = merge_sort(alist[mid:])

    # 将两个有序的子序列合并为一个新的整体
    # merge(left, right)
    left_pointer, right_pointer = 0, 0
    result = []

    while left_pointer < len(left_li) and right_pointer < len(right_li):
        if left_li[left_pointer] <=  right_li[right_pointer]:
            result.append(left_li[left_pointer])
            left_pointer += 1
        else:
            result.append(right_li[right_pointer])
            right_pointer += 1

    result += left_li[left_pointer:]
    result += right_li[right_pointer:]
    return result

时间复杂度

最优时间复杂度:O(nlogn)
最坏时间复杂度:O(nlogn)
稳定性:稳定

排序总结

快速排序必须掌握

Python 2个数组合并extend python合并两个数组并排序_归并排序_02

搜索

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

Python 2个数组合并extend python合并两个数组并排序_Python 2个数组合并extend_03

二分法查找实现

(非递归实现)
def binary_search_2(alist, item):
    """二分查找, 非递归"""
    n = len(alist)
    first = 0
    last = n-1
    while first <= last:
        mid = (first + last)//2
        if alist[mid] == item:
            return True
        elif item < alist[mid]:
            last = mid - 1
        else:
            first = mid + 1
    return False
(递归实现)
def binary_search(alist, item):
    """二分查找,递归"""
    n = len(alist)
    if n > 0:
        mid = n//2
        if alist[mid] == item:
            return True
        elif item < alist[mid]:
            return binary_search(alist[:mid], item)
        else:
            return binary_search(alist[mid+1:], item)
    return False

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)