排序,搜索
- 归并排序
- 归并排序的分析
- 代码实现
- 时间复杂度
- 排序总结
- 搜索
- 二分法查找
- 二分法查找实现
- (非递归实现)
- (递归实现)
- 时间复杂度
归并排序
归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。
将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
归并排序的分析
代码实现
def merge_sort(alist):
"""归并排序"""
n = len(alist)
if n <= 1:
return alist
mid = n//2
# left 采用归并排序后形成的有序的新的列表
left_li = merge_sort(alist[:mid])
# right 采用归并排序后形成的有序的新的列表
right_li = merge_sort(alist[mid:])
# 将两个有序的子序列合并为一个新的整体
# merge(left, right)
left_pointer, right_pointer = 0, 0
result = []
while left_pointer < len(left_li) and right_pointer < len(right_li):
if left_li[left_pointer] <= right_li[right_pointer]:
result.append(left_li[left_pointer])
left_pointer += 1
else:
result.append(right_li[right_pointer])
right_pointer += 1
result += left_li[left_pointer:]
result += right_li[right_pointer:]
return result
时间复杂度
最优时间复杂度:O(nlogn)
最坏时间复杂度:O(nlogn)
稳定性:稳定
排序总结
快速排序必须掌握
搜索
搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找
二分法查找
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
二分法查找实现
(非递归实现)
def binary_search_2(alist, item):
"""二分查找, 非递归"""
n = len(alist)
first = 0
last = n-1
while first <= last:
mid = (first + last)//2
if alist[mid] == item:
return True
elif item < alist[mid]:
last = mid - 1
else:
first = mid + 1
return False
(递归实现)
def binary_search(alist, item):
"""二分查找,递归"""
n = len(alist)
if n > 0:
mid = n//2
if alist[mid] == item:
return True
elif item < alist[mid]:
return binary_search(alist[:mid], item)
else:
return binary_search(alist[mid+1:], item)
return False
时间复杂度
- 最优时间复杂度:O(1)
- 最坏时间复杂度:O(logn)