1

1.2 对原代码进行注释,调试,增加PIL法显示中文标示。

1.3 获取摄像头实现动态人脸识别。

1.4 分为:侦测-收集-训练-识别。




python3.7对应的opencv版本 python3.8对应的opencv_xml


2 准备:

=====

2.1 安装opencv:

pip install opencv-python

2.2 注意:导入模块

import cv2   #cv2不是版本号

科普一下:

cv2中的 2 不是指定发布的版本号,而是为了区分OpenCV的 C 和 C++ 的版本。

OpenCV1.x 使用 C 开发;而OpenCV2.x 使用C++。

2.3 环境:

华为笔记本电脑、深度deepin-linux操作系统、谷歌浏览器、python3.8和微软vscode编辑器。

3 文件结构:

========

3.1 图:


python3.7对应的opencv版本 python3.8对应的opencv_Desktop_02


3.2 层次示意图:


python3.7对应的opencv版本 python3.8对应的opencv_ide_03


3.3 两个xml文件来自:分类器一般位于安装包cv2下

比如:本机:file:///usr/local/python3.8/lib/python3.8/site-packages/cv2/data下,复制过来即可

===以下代码基于笔记本电脑的摄像头,需打开,训练自己头像===

4 五个代码依次进行:

===============

4.1 1-FaceDetection.py代码:

#人脸检测import numpy as npimport cv2# 人脸识别分类器faceCascade = cv2.CascadeClassifier('/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml')# 识别眼睛的分类器eyeCascade = cv2.CascadeClassifier('/home/xgj/Desktop/face-de/haarcascade_eye.xml')# 开启摄像头cap = cv2.VideoCapture(0)ok = Trueresult =[]  #原bug,自己补充while ok:    # 读取摄像头中的图像,ok为是否读取成功的判断参数    ok, img = cap.read()    # 转换成灰度图像    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    # 人脸检测    faces = faceCascade.detectMultiScale(        gray,        scaleFactor=1.2,        minNeighbors=5,        minSize=(32, 32)    )    result = []    # 在检测人脸的基础上检测眼睛    for (x, y, w, h) in faces:        fac_gray = gray[y: (y+h), x: (x+w)]        result = []        eyes = eyeCascade.detectMultiScale(fac_gray, 1.3, 2)        # 眼睛坐标的换算,将相对位置换成绝对位置        for (ex, ey, ew, eh) in eyes:            result.append((x+ex, y+ey, ew, eh))    # 画矩形框--脸部    for (x, y, w, h) in faces:        cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)   #眼睛    for (ex, ey, ew, eh) in result:        cv2.rectangle(img, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)   #显示    cv2.imshow('video', img)   #退出定义    k = cv2.waitKey(1)    if k == 27:    # press 'ESC' to quit        breakcap.release()cv2.destroyAllWindows()

===注意4.1代码不需要也没关系===

4.2 2-FaceDataCollect.py代码:

#FaceDataCollect,人脸数据收集import cv2import os# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2cap = cv2.VideoCapture(0)#注意路径face_detector = cv2.CascadeClassifier('/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml')#请输入id:0为一个人,第二个人请输入1,在4py中检测识别中idnums有用face_id = input(' enter user id:')print(' Initializing face capture. Look at the camera and wait ...')count = 0while True:    # 从摄像头读取图片    sucess, img = cap.read()    # 转为灰度图片    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    # 检测人脸    faces = face_detector.detectMultiScale(gray, 1.3, 5)   #面部画框    for (x, y, w, h) in faces:        cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))        count += 1        # 保存图像,注意路径        cv2.imwrite("/home/xgj/Desktop/face-de/img/user." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w])        cv2.imshow('image', img)    # 保持画面的持续。    k = cv2.waitKey(1)    if k == 27:   # 通过esc键退出摄像        break    elif count >= 1000:  # 得到1000个样本后退出摄像,可自定义数值大小        break# 关闭摄像头cap.release()cv2.destroyAllWindows()#大概需要半个小时,收集1000张图片#我自己约5分钟后暂停,期间可以做各种面部动作,我大概收集50张

4.3 3-face_training.py代码:

#face_training,人脸数据训练import numpy as npfrom PIL import Imageimport osimport cv2# 人脸数据路径,上面保存的灰色照片数据集path = '/home/xgj/Desktop/face-de/img'recognizer = cv2.face.LBPHFaceRecognizer_create()detector = cv2.CascadeClassifier("/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml")def getImagesAndLabels(path):    imagePaths = [os.path.join(path, f) for f in os.listdir(path)]     faceSamples = []    ids = []    for imagePath in imagePaths:        PIL_img = Image.open(imagePath).convert('L')   # convert it to grayscale        img_numpy = np.array(PIL_img, 'uint8')        id = int(os.path.split(imagePath)[-1].split(".")[1])        faces = detector.detectMultiScale(img_numpy)        for (x, y, w, h) in faces:            faceSamples.append(img_numpy[y:y + h, x: x + w])            ids.append(id)    return faceSamples, idsprint('Training faces. It will take a few seconds. Wait ...')faces, ids = getImagesAndLabels(path)recognizer.train(faces, np.array(ids))#保存训练好的文件recognizer.write('/home/xgj/Desktop/face-de/face_trainer/trainer.yml')print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))

4.4 人脸识别:

==========

4.4.1 英文版的人脸识别4-face_recognition.py代码:

#face_recognition 人脸检测并识别,显示人名import cv2recognizer = cv2.face.LBPHFaceRecognizer_create()recognizer.read('/home/xgj/Desktop/face-de/face_trainer/trainer.yml')cascadePath = "/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml"faceCascade = cv2.CascadeClassifier(cascadePath)font = cv2.FONT_HERSHEY_SIMPLEX#这里为0或者1都没有关系idnum = 1names = ['Allen', 'Bob']   #names中存储人的名字,若该人id为0则他的名字在第一位,id位1则排在第二位,以此类推cam = cv2.VideoCapture(0)minW = 0.1*cam.get(3)minH = 0.1*cam.get(4)while True:    ret, img = cam.read()    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    faces = faceCascade.detectMultiScale(        gray,        scaleFactor=1.2,        minNeighbors=5,        minSize=(int(minW), int(minH))    )    for (x, y, w, h) in faces:        cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)        idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w])        if confidence < 100:            idnum = names[idnum]             confidence = "{0}%".format(round(100 - confidence))        else:            idnum = "unknown"            confidence = "{0}%".format(round(100 - confidence))        cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)  #不能显示中文        cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (0, 0, 0), 1)     cv2.imshow('camera', img)    k = cv2.waitKey(10)    if k == 27:        breakcam.release()cv2.destroyAllWindows()

4.4.2 PIL法显示中文的人脸识别5-face_recognition_zh_PIL.py代码:自己添加的

#face_recognition 人脸检测,PIL法显示中文人名import cv2#---增加的PIL法显示中文---import numpyfrom PIL import Image, ImageDraw, ImageFont#定义一个函数def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):    if (isinstance(img, numpy.ndarray)):  # 判断是否OpenCV图片类型        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))    # 创建一个可以在给定图像上绘图的对象    draw = ImageDraw.Draw(img)    # 字体的格式,自己下载华文仿宋字体,放在根目录下    fontStyle = ImageFont.truetype(        "hwfs.ttf", textSize, encoding="utf-8")    # 绘制文本    draw.text((left, top), text, textColor, font=fontStyle)    # 转换回OpenCV格式    return cv2.cvtColor(numpy.asarray(img), cv2.COLOR_RGB2BGR)recognizer = cv2.face.LBPHFaceRecognizer_create()recognizer.read('/home/xgj/Desktop/face-de/face_trainer/trainer.yml')cascadePath = "/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml"faceCascade = cv2.CascadeClassifier(cascadePath)font = cv2.FONT_HERSHEY_SIMPLEX#这里为0或者1都没有关系idnum = 0names = ['机器人', 'Bob']   #names中存储人的名字,若该人id为0则他的名字在第一位,id位1则排在第二位,以此类推cam = cv2.VideoCapture(0)minW = 0.1*cam.get(3)minH = 0.1*cam.get(4)while True:    ret, img = cam.read()    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    faces = faceCascade.detectMultiScale(        gray,        scaleFactor=1.2,        minNeighbors=5,        minSize=(int(minW), int(minH))    )    for (x, y, w, h) in faces:        cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)        idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w])        if confidence < 100:            idnum = names[idnum]             confidence = "{0}%".format(round(100 - confidence))        else:            idnum = "unknown"            confidence = "{0}%".format(round(100 - confidence))        #cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)  #不能显示中文        #注意下面格式,位置去掉元组格式,并int化        img = cv2ImgAddText(img, str(idnum), int(x+5), int(y-5),  (0, 0, 255),20)  #显示为中文PIL法        cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (0, 0, 0), 1)     cv2.imshow('camera', img)    k = cv2.waitKey(10)    if k == 27:        breakcam.release()cv2.destroyAllWindows()

效果图


python3.7对应的opencv版本 python3.8对应的opencv_Desktop_04