点云数据分为有序与无序两种类型:
HEIGHT被设置为1,可以用来作为判断是有序点云或无序点云的判断标准。
接下来介绍几种常用的点云类型:
1、PointXYZ
xyz坐标信息,这三个浮点数附加一个浮点数来满足存储对齐,用户可利用points[i].data[0],或者points[i].x访问点的x坐标值。
union
{
float data[4];
struct
{
float x;
float y;
float z;
};
};
2、PointXYZI
PointXYZI是一个简单的XYZ坐标加intensity的point类型,理想情况下,这四个变量将新建单独一个结构体,并且满足存储对齐,然而,由于point的大部分操作会把data[4]元素设置成0或1(用于变换),不能让intensity与xyz在同一个结构体中,如果这样的话其内容将会被覆盖。例如,两个点的点积会把他们的第四个元素设置成0,否则该点积没有意义,等等。因此,对于兼容存储对齐,用三个额外的浮点数来填补intensity,这样在存储方面效率较低,但是符合存储对齐要求,运行效率较高。
union
{
float data[4];
struct
{
float x;
float y;
float z;
};
};
union
{
struct
{
float intensity;
};
float data_c[4];
};
3、PointXYZRGB
rgb信息被包含在一个浮点型变量中。rgb数据被压缩到一个浮点数里的原因在于早期PCL是作为ROS项目的一部分来开发的,那里RGB数据是用浮点数来传送的。
union
{
float data[4];
struct
{
float x;
float y;
float z;
};
};
union
{
struct
{
float rgb;
};
float data_c[4];
};
访问方式(注意访问方式有两种,“cloud->”和“cloud.”这两种访问方式主要取决于你如何定义点云对象,如下代码所示,采用哪种对象定义方式,就选择对应的访问符号):
pcl::PointCloud<pcl::PointXYZ> ::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
cloud->points[i].x = 1;
cloud->points[i].y = 2;
cloud->points[i].z = 3;
int r = cloud->points[i].r;
int g = cloud->points[i].g;
int b = cloud->points[i].b;
cloud->points[i].normal[0] = 1024 * rand () / (RAND_MAX + 1.0f);
cloud->points[i].normal[1] = 1024 * rand () / (RAND_MAX + 1.0f);
cloud->points[i].normal[2] = 1024 * rand () / (RAND_MAX + 1.0f);
//
pcl::PointCloud<pcl::PointXYZ> cloud
cloud.points[i].x = 1;
cloud.points[i].y = 2;
cloud.points[i].z = 3;
int r = cloud.points[i].r;
int g = cloud.points[i].g;
int b = cloud.points[i].b;
cloud.points[i].normal[0] = 1024 * rand () / (RAND_MAX + 1.0f);
cloud.points[i].normal[1] = 1024 * rand () / (RAND_MAX + 1.0f);
cloud.points[i].normal[2] = 1024 * rand () / (RAND_MAX + 1.0f);
4、PointXYZRGBNormal
PointXYZRGBNormal存储XYZ数据和RGB颜色的point结构体,并且包括曲面法线和曲率,- float x, y, z, rgb, normal[3], curvature;
union
{
float data[4];
struct
{
float x;
float y;
float z;
};
};
union
{
float data_n[4];
float normal[3];
struct
{
float normal_x;
float normal_y;
float normal_z;
};
}
union
{
struct
{
float rgb;
float curvature;
};
float data_c[4];
};
5、PointXYZINormal
PointXYZINormal存储XYZ数据和强度值的point结构体,并且包括曲面法线和曲率, float x, y, z, intensity, normal[3], curvature;
union
{
float data[4];
struct
{
float x;
float y;
float z;
};
};
union
{
float data_n[4];
float normal[3];
struct
{
float normal_x;
float normal_y;
float normal_z;
};
}
union
{
struct
{
float intensity;
float curvature;
};
float data_c[4];
};
在这里仅列出4种类型,如果想了解更多的类型请移步:
点云数据拼接
新建一个文件 test.cpp,然后将下面的代码复制到文件中。
#include <iostream> //标准输入输出流
#include <pcl/io/pcd_io.h> //PCL的PCD格式文件的输入输出头文件
#include <pcl/point_types.h> //PCL对各种格式的点的支持头文件
// 程序拼接A和B到C
int main (int argc, char** argv)
{
if (argc != 2) // 需要一个参数 -f 或 -p
{
std::cerr << "please specify command line arg '-f' or '-p'" << std::endl;
exit(0);
}
// 用于拼接不同点云的点的变量
pcl::PointCloud<pcl::PointXYZ> cloud_a, cloud_b, cloud_c; //创建点云(不是指针),存储点坐标xyz
// 用于拼接不同点云的域(点和法向量)的变量
pcl::PointCloud<pcl::Normal> n_cloud_b; //创建点云,储存法向量
pcl::PointCloud<pcl::PointNormal> p_n_cloud_c; //创建点云,储存点坐标和法向量
//填充点云数据
cloud_a.width = 5; //设置宽度
cloud_a.height = cloud_b.height = n_cloud_b.height = 1; //设置高度
cloud_a.points.resize (cloud_a.width * cloud_a.height); //变形,无序
if (strcmp(argv[1], "-p") == 0) //根据输入参数,设置点云
{
cloud_b.width = 3; //cloud_b用于拼接不同点云的点
cloud_b.points.resize (cloud_b.width * cloud_b.height);
}
else{
n_cloud_b.width = 5; //n_cloud_b用于拼接不同点云的域
n_cloud_b.points.resize (n_cloud_b.width * n_cloud_b.height);
}
for (size_t i = 0; i < cloud_a.points.size (); ++i) //设置cloud_a中点的坐标(随机数)
{
cloud_a.points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_a.points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_a.points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
}
if (strcmp(argv[1], "-p") == 0)
for (size_t i = 0; i < cloud_b.points.size (); ++i) //设置cloud_b中点的坐标(随机数)
{
cloud_b.points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_b.points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
cloud_b.points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
}
else // -f
for (size_t i = 0; i < n_cloud_b.points.size (); ++i) //设置n_cloud_b中点的坐标(随机数)
{
n_cloud_b.points[i].normal[0] = 1024 * rand () / (RAND_MAX + 1.0f);
n_cloud_b.points[i].normal[1] = 1024 * rand () / (RAND_MAX + 1.0f);
n_cloud_b.points[i].normal[2] = 1024 * rand () / (RAND_MAX + 1.0f);
}
// 打印拼接用的数据 A和B
std::cerr << "Cloud A: " << std::endl;
for (size_t i = 0; i < cloud_a.points.size (); ++i) //打印cloud_a的点坐标信息
std::cerr << " " << cloud_a.points[i].x << " " << cloud_a.points[i].y << " " << cloud_a.points[i].z << std::endl;
std::cerr << "Cloud B: " << std::endl; //打印Cloud B
if (strcmp(argv[1], "-p") == 0) //若输入参数是-p,打印cloud_b;
for (size_t i = 0; i < cloud_b.points.size (); ++i)
std::cerr << " " << cloud_b.points[i].x << " " << cloud_b.points[i].y << " " << cloud_b.points[i].z << std::endl;
else //若-f,打印n_cloud_b
for (size_t i = 0; i < n_cloud_b.points.size (); ++i)
std::cerr << " " << n_cloud_b.points[i].normal[0] << " " << n_cloud_b.points[i].normal[1] << " " << n_cloud_b.points[i].normal[2] << std::endl;
//复制点云中的点
if (strcmp(argv[1], "-p") == 0)
{
cloud_c = cloud_a;
cloud_c += cloud_b; // cloud_a + cloud_b 意思是cloud_c包含了a和b中的点,c的点数 = a的点数+b的点数
std::cerr << "Cloud C: " << std::endl; 打印Cloud C
for (size_t i = 0; i < cloud_c.points.size (); ++i) //打印Cloud C
std::cerr << " " << cloud_c.points[i].x << " " << cloud_c.points[i].y << " " << cloud_c.points[i].z << " " << std::endl;
}
else //若输入参数是-f
{
pcl::concatenateFields (cloud_a, n_cloud_b, p_n_cloud_c); //拼接(点)cloud_a和(法向量)n_cloud_b到p_n_cloud_c
std::cerr << "Cloud C: " << std::endl;
for (size_t i = 0; i < p_n_cloud_c.points.size (); ++i) //打印Cloud C
std::cerr << " " <<
p_n_cloud_c.points[i].x << " " << p_n_cloud_c.points[i].y << " " << p_n_cloud_c.points[i].z << " " <<
p_n_cloud_c.points[i].normal[0] << " " << p_n_cloud_c.points[i].normal[1] << " " << p_n_cloud_c.points[i].normal[2] << std::endl;
}
return (0);
}
- 生成项目;到该项目的Debug目录下,按住Shift,同时点击鼠标右键,在当前窗口打开CMD窗口。在CMD窗口中,输入命令
test.exe -p
,执行拼接不同点云的点。输入命令concatenate_clouds.exe -f
,执行拼接不同点云的域(比如点和法向量)。结果如下图所示。 - 自己写了个简单的:
(注意,我一开始定义点云对象时采用
pcl::PointCloud<pcl::PointXYZ> ::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::Normal> ::Ptr cloud(new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<pcl::PointNormal> ::Ptr cloud(new pcl::PointCloud<pcl::PointNormal>);
但是这样定义以后,我发现下面这行代码会出错,至于原因我也没弄清楚,各位小伙伴有知道的还望不吝赐教在评论区???
pcl::concatenateFields(mycloud, n_cloud, np_cloud);
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
using namespace std;
int main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ> mycloud;//Ptr mycloud(new pcl::PointCloud<pcl::PointXYZ>)
//pcl::PointCloud<pcl::PointXYZ> mycloud;
mycloud.width = 100;
mycloud.height = 1;//表示无序点云
mycloud.is_dense = false;
mycloud.resize(mycloud.width*mycloud.height);
for (int i = 0; i < mycloud.points.size(); i++)
{
mycloud.points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
mycloud.points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
mycloud.points[i].z = 1024 * rand() / (RAND_MAX + 1.0f);
}
pcl::PointCloud<pcl::PointNormal> np_cloud;
pcl::PointCloud<pcl::Normal> n_cloud;
n_cloud.width = 100;
n_cloud.height = 1;//表示无序点云
n_cloud.is_dense = false;
n_cloud.resize(n_cloud.width*n_cloud.height);
for (int i = 0; i < n_cloud.points.size(); i++)
{
n_cloud.points[i].normal[0] = 1024 * rand() / (RAND_MAX + 1.0f);
n_cloud.points[i].normal[1] = 1024 * rand() / (RAND_MAX + 1.0f);
n_cloud.points[i].normal[2] = 1024 * rand() / (RAND_MAX + 1.0f);
}
pcl::concatenateFields(mycloud, n_cloud, np_cloud);
//打印出写入的点
for (size_t i = 0; i < mycloud.points.size(); ++i)
cout << " " << np_cloud.points[i].x<< " " << np_cloud.points[i].y<< " " << np_cloud.points[i].z
<< " " << np_cloud.points[i].normal[0] << " " << np_cloud.points[i].normal[1] << " " << np_cloud.points[i].normal[2] << endl;
system("pause");
return (0);
}