Hadoop YARN 简介
Hadoop YARN(Yet Another Resource Negotiator)是Apache Hadoop生态系统的一个重要组件,它是Hadoop 2版本引入的新的资源管理器。YARN的设计目标是提高Hadoop的资源利用率和扩展性,使得Hadoop可以支持更多的应用程序。
YARN 的架构
YARN的核心组件包括ResourceManager(资源管理器)和NodeManager(节点管理器)。ResourceManager负责集群中资源的分配和管理,而NodeManager负责每个节点上的资源管理和任务执行。
下面是一个简单的类图,展示了YARN的架构:
classDiagram
ResourceManager <|-- ApplicationManager
ResourceManager <|-- Scheduler
ResourceManager <|-- ResourceTracker
NodeManager <|-- ContainerManager
YARN 的工作流程
- 用户提交应用程序到ResourceManager。
- ResourceManager将应用程序分配给一个ApplicationManager。
- ApplicationManager会向ResourceManager请求资源,并接收分配的资源。
- ApplicationManager通过Scheduler将任务分配给NodeManager。
- NodeManager启动ContainerManager来运行任务。
示例代码
下面是一个简单的示例,演示了如何使用YARN提交一个MapReduce作业。假设我们有一个WordCount程序,需要在Hadoop集群上运行。
首先,我们需要创建一个MapReduce作业:
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
然后,我们可以使用如下代码提交作业到YARN集群:
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://namenode:9000");
conf.set("mapreduce.framework.name", "yarn");
conf.set("yarn.resourcemanager.address", "resourcemanager:8032");
conf.set("yarn.resourcemanager.scheduler.address", "resourcemanager:8030");
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCount.TokenizerMapper.class);
job.setCombinerClass(WordCount.IntSumReducer.class);
job.setReducerClass(WordCount.IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
结论
通过本文的介绍,我们了解了Hadoop YARN的基本架构和工作流程,并演示了如何使用YARN提交一个MapReduce作业。YARN的引入极大地提高了Hadoop的资源管理和应用扩展性,使得Hadoop可以更好地支持大规模数据处理任务。希望本文对您有所帮助,谢谢阅读!