雪花算法在Java中的应用
雪花算法(Snowflake)是Twitter开源的一种分布式ID生成算法,可以保证在分布式环境中生成唯一的ID。在Java开发中,雪花算法被广泛应用于分布式系统中,用来生成全局唯一的ID,例如订单号、用户ID等。本文将介绍几种在Java中常用的雪花算法,并提供代码示例。
1. Twitter的雪花算法
Twitter的雪花算法是最为经典的雪花算法之一,采用64位的long型数据结构来存储生成的ID。其中,高41位表示时间戳,中间10位表示机器ID,最后13位表示序列号。下面是Twitter的雪花算法Java实现示例:
public class SnowflakeIdWorker {
private final long workerId;
private final static long START_TIMESTAMP = 1480166465631L;
private long sequence = 0L;
private final static long SEQUENCE_BIT = 12;
private final static long WORKER_BIT = 5;
private final static long MAX_WORKER_ID = -1L ^ (-1L << WORKER_BIT);
private final static long WORKER_SHIFT = SEQUENCE_BIT;
private final static long TIMESTAMP_SHIFT = SEQUENCE_BIT + WORKER_BIT;
private final static long SEQUENCE_MASK = -1L ^ (-1L << SEQUENCE_BIT);
private long lastTimestamp = -1L;
public SnowflakeIdWorker(long workerId) {
if (workerId > MAX_WORKER_ID || workerId < 0) {
throw new IllegalArgumentException("worker Id can't be greater than " + MAX_WORKER_ID + " or less than 0");
}
this.workerId = workerId;
}
public synchronized long nextId() {
long timestamp = System.currentTimeMillis();
if (timestamp < lastTimestamp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & SEQUENCE_MASK;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
return ((timestamp - START_TIMESTAMP) << TIMESTAMP_SHIFT) |
(workerId << WORKER_SHIFT) |
sequence;
}
private long tilNextMillis(long lastTimestamp) {
long timestamp = System.currentTimeMillis();
while (timestamp <= lastTimestamp) {
timestamp = System.currentTimeMillis();
}
return timestamp;
}
}
2. 百度的UidGenerator
百度的UidGenerator是一种基于雪花算法的分布式ID生成器,使用了更加严格的并发控制来保证生成的ID唯一性。下面是UidGenerator的Java实现示例:
public class UidGenerator {
private final long baseEpoch = 1288834974657L;
private final long workerIdBits = 5L;
private final long sequenceBits = 12L;
private final long workerIdShift = sequenceBits;
private final long timestampShift = sequenceBits + workerIdBits;
private final long sequenceMask = ~(-1L << sequenceBits);
private long lastTimestamp = -1L;
private long sequence = 0L;
private final long workerId;
public UidGenerator(long workerId) {
this.workerId = workerId;
}
public synchronized long nextId() {
long timestamp = System.currentTimeMillis();
if (timestamp < lastTimestamp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (timestamp == lastTimestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
return ((timestamp - baseEpoch) << timestampShift) |
(workerId << workerIdShift) |
sequence;
}
private long tilNextMillis(long lastTimestamp) {
long timestamp = System.currentTimeMillis();
while (timestamp <= lastTimestamp) {
timestamp = System.currentTimeMillis();
}
return timestamp;
}
}
总结
以上是两种在Java中常用的雪花算法实现,它们都采用了类似的原理来生成全局唯一的ID。在实际开发中,可以根据业务需求选择合适的雪花算法实现来生成ID。同时,需要注意并发安全性和时钟回拨等问题