如何使用Hadoop统计路径文件行数
一、流程概述
在使用Hadoop统计路径文件行数的过程中,我们需要以下步骤:
gantt
title Hadoop统计路径文件行数流程
section 准备工作
创建文件夹:a1, 2022-01-01, 1d
上传文件到文件夹:a2, after a1, 1d
section 使用Hadoop
创建输入输出文件夹:b1, 2022-01-02, 1d
编写Mapper类:b2, after b1, 1d
编写Reducer类:b3, after b2, 1d
运行Hadoop任务:b4, after b3, 1d
二、具体步骤
1. 准备工作
在进行Hadoop任务之前,首先需要进行准备工作:
- 创建一个文件夹,并将要统计的文件上传到该文件夹中。
2. 使用Hadoop
2.1 创建输入输出文件夹
在Hadoop中,需要为输入和输出结果创建文件夹:
```shell
hadoop fs -mkdir input
hadoop fs -put local_file_path input
hadoop fs -mkdir output
#### 2.2 编写Mapper类
Mapper类主要用于将输入的文本数据转换为键值对:
```java
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class LineCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
context.write(new Text("Total Lines"), new LongWritable(1));
}
}
2.3 编写Reducer类
Reducer类主要用于对Mapper输出的结果进行汇总计算:
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class LineCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context)
throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
}
2.4 运行Hadoop任务
最后,运行Hadoop任务来统计文件行数:
```shell
hadoop jar path/to/hadoop-streaming.jar \
-input input \
-output output \
-mapper "javac LineCountMapper.java" \
-reducer "javac LineCountReducer.java"
## 三、关系图
```mermaid
erDiagram
Hadoop --> Mapper类
Mapper类 --> Reducer类
Hadoop --> Reducer类
通过以上步骤,你就可以成功地使用Hadoop统计路径文件行数了。希望这篇文章对你有所帮助!