hdu 5386 Cover

Description
You have an matrix.Every grid has a color.Now there are two types of operating:
L x y: for(int i=1;i<=n;i++)color[i][x]=y;
H x y:for(int i=1;i<=n;i++)color[x][i]=y;
Now give you the initial matrix and the goal matrix.There are operatings.Put in order to arrange operatings,so that the initial matrix will be the goal matrix after doing these operatings

It’s guaranteed that there exists solution.

Input
There are multiple test cases,first line has an integer
For each case:
First line has two integer ,
Then lines,every line has integers,describe the initial matrix
Then lines,every line has integers,describe the goal matrix
Then lines,every line describe an operating

Output
For each case,print a line include integers.The i-th integer x show that the rank of x-th operating is

Sample Input

1
3 5
2 2 1
2 3 3
2 1 3
3 3 3
3 3 3
3 3 3
H 2 3
L 2 2
H 3 3
H 1 3
L 2 3

Sample Output

5 2 4 3 1

题目大意:给你n×n的初始图形,和目标图形,还有m个操作,操作和一把一行或一列变成一种颜色,现在问使初始图形变成目标图形的操作的顺序。每个操作都要用上,且一定有解。

解题思路:初始图形没有用。直接从目标图形开始进行操作。对于一个操作,判断该操作对应的那一行或一列的颜色,是否除0之外全部都是与该操作变换的颜色相同,是的话,将那一行或一列全部变为0,并且记录该操作,最后逆序输出。注意,把所有操作遍历一遍是不够的,因为有一些操作是要在别的操作已进行过的基础上才能进行,所以在遍历操作的外层要再加一层循环(cnt

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;

const int N = 205;
const int M = 2005;
typedef long long ll;
int ans[M];
int G1[N][N], G2[N][N];
struct Node{
    int pos, val, id;
}H[M], L[M];
int n, m, cntH, cntL;

void init() {
    memset(L, 0, sizeof(L));
    memset(H, 0, sizeof(H));
    memset(G2, 0, sizeof(G2));
    cntH = cntL = 0;
}

void input() {
    scanf("%d %d", &n, &m);
    int a, b;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            scanf("%d", &G1[i][j]);
        }   
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            scanf("%d", &G2[i][j]); 
        }   
    }
    char s[20];
    for (int i = 1; i <= m; i++) {
        scanf("%s", s);
        scanf("%d %d", &a, &b);
        if (strcmp(s, "H") == 0) {
            H[cntH].pos = a;    
            H[cntH].val = b;
            H[cntH++].id = i;
        } else {
            L[cntL].pos = a;
            L[cntL].val = b;
            L[cntL++].id = i;
        }
    }
}


void solve() {
    int cnt = 0;
    while (cnt < m) {
        for (int i = 0; i < cntH; i++) {
            int k = H[i].pos, flag = 1;
            if (!k) continue; 
            for (int j = 1; j <= n; j++) {
                if(G2[k][j] && G2[k][j] != H[i].val) {
                    flag = 0; 
                    break;  
                }
            }
            if(flag) {  
                ans[cnt++] = H[i].id;  
                for(int j = 1; j <= n; j++) G2[k][j] = 0;  
                H[i].pos = 0;
            }  
        }
        for (int i = 0; i < cntL; i++) {
            int k = L[i].pos, flag = 1;  
            if (!k) continue;
            for(int j = 1; j <= n; j++) {
                if(G2[j][k] && G2[j][k] != L[i].val) {
                    flag = 0; 
                    break;  
                }
            }
            if(flag) {  
                ans[cnt++] = L[i].id;  
                for(int j = 1; j <= n; j++) G2[j][k] = 0;  
                L[i].pos = 0;
            }  
        }
    }
    for (int i = m - 1; i >= 1; i--) printf("%d ", ans[i]);
    printf("%d\n", ans[0]);
}

int main() {
    int T;
    scanf("%d", &T);
    while (T--) {
        init();
        input();    
        solve();
    }
    return 0;
}