Map接口的常用实现类HashMap类、Hashtable类、Properties类

HashMap类

1)HashMap是Map接口使用频率最高的实现类

2)HashMap是以键值对的方式来存储数据的

3)key值不可以重复,value可以重复,允许使用null值

4)添加相同的key,会将原来的键值对覆盖

5)数据存储和取出顺序不一致

6)HashMap没有实现同步,线程不安全

HashMap底层说明

1)HashMap扩容机制(和HashSet相同)

2)HashMap底层维护了Node类型的数组table,默认为null

3)当提那家键值对时,通过key的哈希值,得到其在table数组中对应的索引,然后判断索引处是否有元素,没有元素直接添加,有元素,继续判断该元素与加入的元素的key是否相同,相同则替换value值,不相等,判断是树结构还是链表结构,是树结构添加,是链表结构,进行逐个判断,有一个相同则替换value值,没有则添加在尾部,若添加时,数组中所有元素总和达到阈值,则需要扩容

4)第一次添加,扩容table数组容量为16,阈值为12

5)以后再扩容,则扩容table数组容量和阈值都变为原来的2倍

【当元素个数达到阈值12时,会进行下次扩容,扩容数组容量32,阈值24】

6)在Java8中,一条链表的元素个数超过8不一定马上树化

在一条链表元素的个数超过8并且table的数组容量大于等于64时,才会树化

HashMap的底层源码

public static void main(String[] args) {
        HashMap map = new HashMap();
        map.put(1,"a");
        map.put(2,"b");
        map.put(1,"c");

    }


public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; 
    //DEFAULT_LOAD_FACTOR 0.75 默认的加载因子
    // 阈值 = 数组容量的 0.75 倍
    
    // all other fields defaulted
    }

public V put(K key, V value) {
    	//添加键值对的主体函数
        return putVal(hash(key), key, value, false, true);
    }
	
// hash值  计算hash值 
static final int hash(Object key) {
        int h;
        return (key == null)?0:(h = key.hashCode())^(h >>> 16);
    }

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    //辅助变量
        Node<K,V>[] tab; Node<K,V> p; int n, i;
    
    //如果数组第一次创建 为空,或数组长度为 0
        if ((tab = table) == null || (n = tab.length) == 0)
            //数组进行扩容 第一次扩容为16 阈值达到12   = 16 * 0.75
            n = (tab = resize()).length;
    
    //计算根据hash值得出的索引, 如果数组table该索引上 没有元素--直接添加
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else { //若该位置上有元素
            Node<K,V> e; K k;
            //该位置上有元素 情况1:其hash值相同,值也相同,
            if (p.hash == hash &&
                ((k = p.key) == key || 
                 (key != null && key.equals(k))))
                e = p;
            //该位置上有元素 情况2:该位置上的元素,是一个红黑树
            else if (p instanceof TreeNode)
                
                //则进行树结点的添加操作,属于算法的范畴,这里不展开
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab,
                                             hash, key, value);
            //该位置上有元素 情况3:该位置上的元素,是一个链表
            else {
                //在链表上逐个判断,死循环
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //都不存在相同的值,追加在链表尾部
                        if (binCount >= TREEIFY_THRESHOLD - 1)
                            // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //存在相同的hash值相同且值相同,跳出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k))))
                        break;
                    p = e; //相当于 p=p.next指向下一个元链表结点
                }
            }
            //相同的key,对值进行覆盖(修改)
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);//空实现
                return oldValue;
            }
        }
        ++modCount;
    //数组中所有元素的总个数达到阈值,进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);//空实现
        return null;
    }
final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
    	//数组
 
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
    	//数组容量
    
        int oldThr = threshold;
    	//数组扩容的阈值
    
    	//数组扩容后的容量和阈值
        int newCap, newThr = 0;
    
        if (oldCap > 0) {
            //旧数组的容量不为0
            if (oldCap >= MAXIMUM_CAPACITY) {
                //容量达到了最大值
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY 
                     && oldCap >= DEFAULT_INITIAL_CAPACITY)
                //新数组的容量和阈值为原来数组的两倍
                
                newThr = oldThr << 1; 
            // double threshold
        }
        else if (oldThr > 0) 
            // initial capacity was placed in threshold
            newCap = oldThr;
        else {           
            
  // zero initial threshold signifies using defaults
  newCap = DEFAULT_INITIAL_CAPACITY;
  newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
  //在这里,oldCap和oldThr都是<=0的,数组的容量和阈值取默认值,16和12
        }
        if (newThr == 0) {
          	//newThr为0时,newCao为16,加载因子loadFactor为0.75
            float ft = (float)newCap * loadFactor;//ft计算可得12
            newThr = (newCap < MAXIMUM_CAPACITY 
                      && ft < (float)MAXIMUM_CAPACITY 
                      ?(int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
  //表示数组下次需要扩容的阈值
        @SuppressWarnings({"rawtypes","unchecked"})
  			//在这里数组才真正的被创建出来
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
  
   			//如果原来的数组不为null,将原来的数组拷贝到新数组中
        if (oldTab != null) {
         
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, 
                                                 j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                      
                    }//else {  preserve order
                }//if((e = oldTab[j]) != null) 
            }//for
        }//if
        return newTab;
    }

Hashtable类

1)存放的元素是键值对,但都不能为null

2)Hashtable使用方法上和HashMap基本上一致

3)Hashtable是线程安全的

Hashtable底层说明

1)底层维护数组Hashtable$Entry[] 初始化大小为11

2)阈值threshold 8 = 11 * 0.75(加载因子为0.75)

3)扩容按照(容量大小 * 2 +1)计算得出

Hashtable的底层源码

---- jdk 17 ----
//在Hashtable中有静态内部类Entry实现了Map.Entry<K,V>接口
private static class Entry<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Entry<K,V> next;

        protected Entry(int hash, K key, V value, Entry<K,V> next) 
        {
            this.hash = hash;
            this.key =  key;
            this.value = value;
            this.next = next;
        }

        @SuppressWarnings("unchecked")
        protected Object clone() {
            return new Entry<>(hash, key, value,
            (next==null ? null : (Entry<K,V>) next.clone()));
        }

        // Map.Entry Ops

        public K getKey() {
            return key;
        }

        public V getValue() {
            return value;
        }

        public V setValue(V value) {
            if (value == null)
                throw new NullPointerException();

            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry<?, ?> e))
                return false;

            return (key==null ? e.getKey()==null :
                    key.equals(e.getKey())) &&
               (value==null ? e.getValue()==null :
                value.equals(e.getValue()));
        }

        public int hashCode() {
            return hash ^ Objects.hashCode(value);
        }

        public String toString() {
            return key.toString()+"="+value.toString();
        }
    }
---- jdk 17 ----
// 主函数调用
public static void main(String[] args) {
        Hashtable map = new Hashtable();
        map.put(1,"a");
        map.put(2,"b");
        map.put(1,"c");
    }

//构造函数调用
public Hashtable() {
        this(11, 0.75f);
    }

//this(11, 0.75f); initialCapacity = 11  loadFactor = 0.75f
public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException(
            "Illegal Capacity: "+ initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException(
            "Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry<?,?>[initialCapacity];
        threshold = (int)Math.min(initialCapacity * loadFactor,
                                  MAX_ARRAY_SIZE + 1);
    
    
    //MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    //Integer.MAX_VALUE = 0x7fffffff;
    }

//put方法
public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }

        // Makes sure the key is not already in the hashtable.
        Entry<?,?> tab[] = table;
    
    	//得到key的哈希值
        int hash = key.hashCode();
    
    	//通过key的哈希值计算得出索引
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
    
    	//看看数组中通过该索引的出的值是否为空
    	//不为空,意味着该数组上有元素
        Entry<K,V> entry = (Entry<K,V>)tab[index];
    
    	//遍历该数组结点中的链表
        for(; entry != null ; entry = entry.next) {
            
            //如果该位置上的元素hash值和值均相等 --- 对原来的值进行覆盖
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                entry.value = value;
                
                //终止 循环
                return old;
            }
        }
		
    	//将该元素加入数组
        addEntry(hash, key, value, index);
        return null;
    }

//addEntry(hash, key, value, index);
private void addEntry(int hash, K key, V value, int index) {
        Entry<?,?> tab[] = table;
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();

            tab = table;
            hash = key.hashCode();
            index = (hash & 0x7FFFFFFF) % tab.length;
        }

        // Creates the new entry.
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>) tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
        modCount++;
    }

//数组扩容机制
protected void rehash() {
        int oldCapacity = table.length;
        Entry<?,?>[] oldMap = table;

        // overflow-conscious code
        int newCapacity = (oldCapacity << 1) + 1;
    	//扩容数组容量 为原来数组容量的两倍+1
    
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];

        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, 
                                  MAX_ARRAY_SIZE + 1);
        table = newMap;

        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; 
                 old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;

                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = (Entry<K,V>)newMap[index];
                newMap[index] = e;
            }
        }
    }

Properties类

基本介绍

1)Properties类继承了Hashtable类并且实现了Map接口

2)也使用键值对存储数据,但都不能为null

3)Properties可以用于xxx.properties文件中,加载数据到Properties中,并进行读取和修改

【xxx.properties文件通常为配置文件】

简单常用方法

put()增,改

remove()删

Properties.get()查找

Properties.getProperty()查找

【在IO流中会进行介绍】

TreeMap类

TreeSet与其相一致

1)传入的元素有序,key无重复,value无要求

2)添加的元素可以自定义比较器

3)使用TreeMap提供的构造器,可以传一个比较器

TreeMap的底层说明

【以字符串长度作为排序的依据为例】

1)当自定义排序规则时,两个值一致则认为两元素相同

2)在下面的主程序中,是按照字符串的长度进行排序的

注意:若出现长度相同的字符串,在TreeMap中则认为是相同类型,将不会假如在sets变量中

TreeMap的底层源码

//主程序
public static void main(String[] args) {
        TreeMap sets = new TreeMap(new Comparator(){
            @Override
            public int compare(Object o1,Object o2){
                return ((String) o1).length() - 
                    ((String) o2).length();
            }
        });
        sets.put("a",1);
        sets.put("a",2);
        sets.put("ab",3);
        System.out.println(sets);
    }

public TreeMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
    }
//this.comparator
private final Comparator<? super K> comparator;

public V put(K key, V value) {
        return put(key, value, true);
    }

//put方法
private V put(K key, V value, boolean replaceOld) {
        Entry<K,V> t = root;
        if (t == null) {
            addEntryToEmptyMap(key, value);
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
    
    	//比较器comparator传入的比较器(匿名内部类)
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            //逐个比较
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                //compare动态绑定到匿名内部类然后实现排序规则
                
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else {
                    //当两个值相等
                    V oldValue = t.value;
                    if (replaceOld || oldValue == null) {
                        t.value = value;
                    }
                    //终止循环,并返回,输入值重复,结束添加
                    return oldValue;
                }
            } while (t != null);
        } else {
            Objects.requireNonNull(key);
            @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else {
                    V oldValue = t.value;
                    if (replaceOld || oldValue == null) {
                        t.value = value;
                    }
                    return oldValue;
                }
            } while (t != null);
        }
        addEntry(key, value, parent, cmp < 0);
        return null;
    }