newFixedThreadPool

创建一个固定大小的线程池。

shutdown():用于关闭启动线程,如果不调用该语句,jvm不会关闭。

awaitTermination():用于等待子线程结束,再继续执行下面的代码。该例中我设置一直等着子线程结束。

 

 

public class Test {

	public static void main(String[] args) throws IOException, InterruptedException {
		ExecutorService service = Executors.newFixedThreadPool(2);
		for (int i = 0; i < 4; i++) {
			Runnable run = new Runnable() {
				@Override
				public void run() {
					System.out.println("thread start");
				}
			};
			service.execute(run);
		}
		service.shutdown();
		service.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
		System.out.println("all thread complete");
	}
}

 

 

 



 输出:



thread start
thread start
thread start
thread start
all thread complete



newScheduledThreadPool

这个先不说,我喜欢用spring quartz.

CyclicBarrier

假设有只有的一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个人没有准备好,大家都等待.

 

 

import java.io.IOException;
import java.util.Random;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

class Runner implements Runnable {

	private CyclicBarrier barrier;

	private String name;

	public Runner(CyclicBarrier barrier, String name) {
		super();
		this.barrier = barrier;
		this.name = name;
	}

	@Override
	public void run() {
		try {
			Thread.sleep(1000 * (new Random()).nextInt(8));
			System.out.println(name + " 准备OK.");
			barrier.await();
		} catch (InterruptedException e) {
			e.printStackTrace();
		} catch (BrokenBarrierException e) {
			e.printStackTrace();
		}
		System.out.println(name + " Go!!");
	}
}

public class Race {

	public static void main(String[] args) throws IOException, InterruptedException {
		CyclicBarrier barrier = new CyclicBarrier(3);

		ExecutorService executor = Executors.newFixedThreadPool(3);
		executor.submit(new Thread(new Runner(barrier, "zhangsan")));
		executor.submit(new Thread(new Runner(barrier, "lisi")));
		executor.submit(new Thread(new Runner(barrier, "wangwu")));

		executor.shutdown();
	}

}

 

 



输出:



wangwu 准备OK.
zhangsan 准备OK.
lisi 准备OK.
lisi Go!!
zhangsan Go!!
wangwu Go!!



ThreadPoolExecutor

 

newFixedThreadPool生成一个固定的线程池,顾名思义,线程池的线程是不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换(while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。

 

 

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)

corePoolSize:池中所保存的线程数,包括空闲线程(非最大同时干活的线程数)。如果池中线程数多于 corePoolSize,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止。

maximumPoolSize:线程池中最大线程数

keepAliveTime:线程空闲回收的时间

unit:keepAliveTime的单位

workQueue:保存任务的队列,可以如下选择:

 

  •   无界队列: new LinkedBlockingQueue<Runnable>();
  •   有界队列: new ArrayBlockingQueue<Runnable>(8);你不想让客户端无限的请求吃光你的CPU和内存吧,那就用有界队列

handler:当提交任务数大于队列size会抛出RejectedExecutionException,可选的值为:

 

  • ThreadPoolExecutor.CallerRunsPolicy 等待队列空闲
  • ThreadPoolExecutor.DiscardPolicy:丢弃要插入队列的任务
  • ThreadPoolExecutor.DiscardOldestPolicy:删除队头的任务

关于corePoolSize和maximumPoolSize:

 



 Java官方Docs写道:



当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求(即使存在空闲线程)。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列(queue)满时才创建新线程。如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。



 

 

public class Test {

	public static void main(String[] args) {
		BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>();
		ThreadPoolExecutor executor = new ThreadPoolExecutor(3, 6, 1, TimeUnit.DAYS, queue);

		for (int i = 0; i < 20; i++) {
			final int index = i;
			executor.execute(new Runnable() {
				public void run() {
					try {
						Thread.sleep(4000);
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
					System.out.println(String.format("thread %d finished", index));
				}
			});
		}
		executor.shutdown();
	}
}

 

原子变量(Atomic )

并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。

 

下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型(AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由于阻塞队列的put和take操作会阻塞,为了使线程退出,在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。

 



 



import java.io.File;
import java.io.FileFilter;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class Test {

	static long randomTime() {
		return (long) (Math.random() * 1000);
	}

	public static void main(String[] args) {
		// 能容纳100个文件
		final BlockingQueue<File> queue = new LinkedBlockingQueue<File>(100);
		// 线程池
		final ExecutorService exec = Executors.newFixedThreadPool(5);
		final File root = new File("D:\\dist\\blank");
		// 完成标志
		final File exitFile = new File("");
		// 读个数
		final AtomicInteger rc = new AtomicInteger();
		// 写个数
		final AtomicInteger wc = new AtomicInteger();
		// 读线程
		Runnable read = new Runnable() {
			public void run() {
				scanFile(root);
				scanFile(exitFile);
			}

			public void scanFile(File file) {
				if (file.isDirectory()) {
					File[] files = file.listFiles(new FileFilter() {
						public boolean accept(File pathname) {
							return pathname.isDirectory() || pathname.getPath().endsWith(".log");
						}
					});
					for (File one : files)
						scanFile(one);
				} else {
					try {
						int index = rc.incrementAndGet();
						System.out.println("Read0: " + index + " " + file.getPath());
						queue.put(file);
					} catch (InterruptedException e) {
					}
				}
			}
		};
		exec.submit(read);
		// 四个写线程
		for (int index = 0; index < 4; index++) {
			// write thread
			final int num = index;
			Runnable write = new Runnable() {
				String threadName = "Write" + num;

				public void run() {
					while (true) {
						try {
							Thread.sleep(randomTime());
							int index = wc.incrementAndGet();
							File file = queue.take();
							// 队列已经无对象
							if (file == exitFile) {
								// 再次添加"标志",以让其他线程正常退出
								queue.put(exitFile);
								break;
							}
							System.out.println(threadName + ": " + index + " " + file.getPath());
						} catch (InterruptedException e) {
						}
					}
				}

			};
			exec.submit(write);
		}
		exec.shutdown();
	}

}



CountDownLatch

 

从名字可以看出,CountDownLatch是一个倒数计数的锁,当倒数到0时触发事件,也就是开锁,其他人就可以进入了。在一些应用场合中,需要等待某个条件达到要求后才能做后面的事情;同时当线程都完成后也会触发事件,以便进行后面的操作。 

CountDownLatch最重要的方法是countDown()和await(),前者主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。

一个CountDouwnLatch实例是不能重复使用的,也就是说它是一次性的,锁一经被打开就不能再关闭使用了,如果想重复使用,请考虑使用CyclicBarrier。

下面的例子简单的说明了CountDownLatch的使用方法,模拟了100米赛跑,10名选手已经准备就绪,只等裁判一声令下。当所有人都到达终点时,比赛结束。

 



 



import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Test {

	public static void main(String[] args) throws InterruptedException {

		// 开始的倒数锁
		final CountDownLatch begin = new CountDownLatch(1);

		// 结束的倒数锁
		final CountDownLatch end = new CountDownLatch(10);

		// 十名选手
		final ExecutorService exec = Executors.newFixedThreadPool(10);

		for (int index = 0; index < 10; index++) {
			final int NO = index + 1;
			Runnable run = new Runnable() {
				public void run() {
					try {
						begin.await();
						Thread.sleep((long) (Math.random() * 10000));
						System.out.println("No." + NO + " arrived");
					} catch (InterruptedException e) {
					} finally {
						end.countDown();
					}
				}
			};
			exec.submit(run);
		}
		System.out.println("Game Start");
		begin.countDown();
		end.await();
		System.out.println("Game Over");
		exec.shutdown();
	}

}



 



使用Callable和Future实现线程等待和多线程返回值



 



 假设在main线程启动一个线程,然后main线程需要等待子线程结束后,再继续下面的操作,我们会通过join方法阻塞main线程,代码如下:



 



Runnable runnable = ...;
    Thread t = new Thread(runnable);
    t.start();
    t.join();
    ......



 通过JDK1.5线程池管理的线程可以使用Callable和Future实现(join()方法无法应用到在线程池线程)



 



import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class Test {

	public static void main(String[] args) throws InterruptedException, ExecutionException {
		System.out.println("start main thread");
		final ExecutorService exec = Executors.newFixedThreadPool(5);
		
		Callable<String> call = new Callable<String>() {
			public String call() throws Exception {
				System.out.println("  start new thread.");
				Thread.sleep(1000 * 5);
				System.out.println("  end new thread.");
				return "some value.";
			}
		};
		Future<String> task = exec.submit(call);
		Thread.sleep(1000 * 2);
		task.get(); // 阻塞,并待子线程结束,
		exec.shutdown();
		exec.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
		System.out.println("end main thread");
	}

}



import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

/**
* 多线程返回值测试
*/
public class ThreadTest {

	public static void main(String[] args) throws InterruptedException, ExecutionException {
		System.out.println("start main thread");
		int threadCount = 5;
		final ExecutorService exec = Executors.newFixedThreadPool(threadCount);

		List<Future<Integer>> tasks = new ArrayList<Future<Integer>>();
		for (int i = 0; i < threadCount; i++) {
			Callable<Integer> call = new Callable<Integer>() {
				public Integer call() throws Exception {
					Thread.sleep(1000);
					return 1;
				}
			};
			tasks.add(exec.submit(call));
		}
		long total = 0;
		for (Future<Integer> future : tasks) {
			total += future.get();
		}
		exec.shutdown();
		System.out.println("total: " + total);
		System.out.println("end main thread");
	}
}



 



CompletionService

这个东西的使用上很类似上面的example,不同的是,它会首先取完成任务的线程。下面的参考文章里,专门提到这个,大家有兴趣可以看下,例子:

 

 

import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class Test {
	public static void main(String[] args) throws InterruptedException,
	ExecutionException {
		ExecutorService exec = Executors.newFixedThreadPool(10);
		CompletionService<String> serv =
		new ExecutorCompletionService<String>(exec);
		for (int index = 0; index < 5; index++) {
			final int NO = index;
			Callable<String> downImg = new Callable<String>() {
				public String call() throws Exception {
					Thread.sleep((long) (Math.random() * 10000));
					return "Downloaded Image " + NO;
				}
			};
			serv.submit(downImg);
		}
		Thread.sleep(1000 * 2);
		System.out.println("Show web content");
		for (int index = 0; index < 5; index++) {
			Future<String> task = serv.take();
			String img = task.get();
			System.out.println(img);
		}
		System.out.println("End");
		// 关闭线程池
		exec.shutdown();
	}
}

 

 

Semaphore信号量

 

拿到信号量的线程可以进入代码,否则就等待。通过acquire()和release()获取和释放访问许可。下面的例子只允许5个线程同时进入执行acquire()和release()之间的代码

 

 

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

public class Test {

	public static void main(String[] args) {
		// 线程池
		ExecutorService exec = Executors.newCachedThreadPool();
		// 只能5个线程同时访问
		final Semaphore semp = new Semaphore(5);
		// 模拟20个客户端访问
		for (int index = 0; index < 20; index++) {
			final int NO = index;
			Runnable run = new Runnable() {
				public void run() {
					try {
						// 获取许可
						semp.acquire();
						System.out.println("Accessing: " + NO);
						Thread.sleep((long) (Math.random() * 10000));
						// 访问完后,释放
						semp.release();
					} catch (InterruptedException e) {
					}
				}
			};
			exec.execute(run);
		}
		// 退出线程池
		exec.shutdown();
	}

}

 



 



 



 



 

参考:

jdk1.5中的线程池使用简介

http://www.java3z.com/cwbwebhome/article/article2/2875.html

CAS原理

http://www.blogjava.net/syniii/archive/2010/11/18/338387.html?opt=admin

jdk1.5中java.util.concurrent包编写多线程

ExecutorSerive vs CompletionService

http://www.coderanch.com/t/491704/threads/java/ExecutorSerive-vs-CompletionService

 

 

-- end --