算法细节系列(30):接口设计
详细代码可以fork下Github上leetcode项目,不定期更新。
题目摘自leetcode:
- Leetcode 380. Insert Delete GetRandom O(1)
- Leetcode 381. Insert Delete GetRandom O(1) - Duplicates allowed
- Leetcode 432. All O`one Data Structure
- Leetcode 355. Design Twitter
- Leetcode 460. LFU Cache
- Leetcode 146. LRU Cache
Leetcode 380. Insert Delete GetRandom O(1)
数据结构题,比较有趣,传统我所熟知的remove操作,除了链表,数组版本的remove都需要O(n)的操作。
数组版本的remove就不能O(1)操作了么?传统的remove操作:
找到要删除的的元素:花费O(n)
删除:
把当前位置的后续元素都向前移动一格。
这种删除比较费时,在维护有序数组时,只能用这种方法。
但此题没有必要维护有序性,所以还有一种取巧的办法,把当前元素和末尾元素进行交换,直接删除末尾元素。
删除可以在O(1)内完成,但查找却费时,所以remove操作的关键在于如何快速查找元素。
O(1)时间内完成查找的有Map,所以我们可以用一个Map来维护当前元素和它对应下标的关系。
这样在remove时可以快速定位所在下标。
代码如下:
public class RandomizedSet {
List<Integer> nums;
Map<Integer, Integer> cache;
Random random = new Random();
/** Initialize your data structure here. */
public RandomizedSet() {
nums = new ArrayList<>();
cache = new HashMap<>();
}
/**
* Inserts a value to the set. Returns true if the set did not already
* contain the specified element.
*/
public boolean insert(int val) {
if (cache.containsKey(val)) return false;
int idx = cache.size();
nums.add(idx,val);
cache.put(val, idx);
return true;
}
/**
* Removes a value from the set. Returns true if the set contained the
* specified element.
*/
public boolean remove(int val) {
if (!cache.containsKey(val)) return false;
int idx = cache.get(val);
if (idx != cache.size()-1){
cache.put(nums.get(cache.size()-1), idx);
nums.set(idx, nums.get(cache.size()-1));
}
cache.remove(val);
nums.remove(nums.size()-1);
return true;
}
/** Get a random element from the set. */
public int getRandom() {
return nums.get(random.nextInt(cache.size()));
}
public static void main(String[] args) {
RandomizedSet rs = new RandomizedSet();
rs.insert(0);
rs.insert(1);
rs.remove(0);
rs.insert(2);
rs.remove(1);
System.out.println(rs.getRandom());
}
}
Leetcode 381. Insert Delete GetRandom O(1) - Duplicates allowed
和第一题的思路大同小异,无非现在要记录重复元素的下标,所以在Map中,需要做点修改,把它改成Set来记录所有重复元素的下标。
代码如下:
public class RandomizedCollection {
List<Integer> nums;
Map<Integer, Set<Integer>> map;
Random random = new Random();
/** Initialize your data structure here. */
public RandomizedCollection() {
nums = new ArrayList<>();
map = new HashMap<>();
}
/** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */
public boolean insert(int val) {
// dup or not dup insert
boolean dup = map.containsKey(val);
nums.add(val);
map.computeIfAbsent(val, a -> new LinkedHashSet<>()).add(nums.size()-1);
return !dup;
}
/** Removes a value from the collection. Returns true if the collection contained the specified element. */
public boolean remove(int val) {
if (!map.containsKey(val)) return false;
int loc = map.get(val).iterator().next();
map.get(val).remove(loc);
if (loc < nums.size()-1){
int last = nums.get(nums.size()-1);
nums.set(loc, last);
map.get(last).remove(nums.size()-1);
map.get(last).add(loc);
}
nums.remove(nums.size()-1);
if (map.get(val).isEmpty()) map.remove(val);
return true;
}
/** Get a random element from the collection. */
public int getRandom() {
return nums.get(random.nextInt(nums.size()));
}
}
Leetcode 432. All O`one Data Structure
思路:
这道题的关键在于时刻维护最小值和最大值,传统的想法,每当加入和删除一个key时,对其计数,此时在已有的集合中找到最大key和最小key。
集合的表达方式可以有数组or链表。先来看看数组的做法吧:
假设该集合在动态插入和删除时能够维持有序操作,如:
map:
"A": 4, "B": 4, "C": 2, "D": 1
array:
D C A B
要做到插入过程中的有序性不难,此时,假设我们有:
inc("C");
inc("C");
inc("C");
三次操作,此时C的计数值为5
array:
D C A B -> D A B C
与此同时,要让array中的C浮动到最右边,而在D和A之间,C消失了。
能够高效实现这种操作的为链表,不管是INC操作还是DEC操作,都可能改变计数值,如果把计数值当作浮动比较的val,那么链表能够很好的让结点上下浮动。且插入和删除的时间复杂度仅为O(1)。
定义:
class Bucket{
int count;
Set<String> keySet;
Bucket prev;
Bucket next;
public Bucket(int cnt){
count = cnt;
keySet = new HashSet<>();
}
}
相同计数值的key无区别,所以可以用一个keySet来装。所以:
D C A B 就可以看成 D C {A,B},此时C的浮动将变得更简单。
count是这个结构体的唯一标识,表示计数值为count的元素集合。如:
4 = {A,B}
2 = {C}
1 = {D}
整体的设计结构如下:
head --- ValueNode1 ---- ValueNode2 ---- ... ---- ValueNodeN --- tail
| | |
first first first
| | |
KeyNodeA KeyNodeE KeyNodeG
| | |
KeyNodeB KeyNodeF KeyNodeH
| |
KeyNodeC KeyNodeI
|
KeyNodeD
private Bucket head;
private Bucket tail;
private Map<String, Integer> keyCountMap;
private Map<Integer, Bucket> countBucketMap;
class Bucket{
int count;
Set<String> keySet;
Bucket prev;
Bucket next;
public Bucket(int cnt){
count = cnt;
keySet = new HashSet<>();
}
}
/** Initialize your data structure here. */
public AllOne() {
head = new Bucket(Integer.MIN_VALUE);
tail = new Bucket(Integer.MAX_VALUE);
head.next = tail;
tail.prev = head;
keyCountMap = new HashMap<>();
countBucketMap = new HashMap<>();
}
}
countBucketMap存在的意义巨大,它相当于让双向链表成了一个快速查找的数组形式,因为countBucketMap记录了每个计数值在链表中的位置。
整体代码如下:
public class AllOne {
private Bucket head;
private Bucket tail;
private Map<String, Integer> keyCountMap;
private Map<Integer, Bucket> countBucketMap;
class Bucket{
int count;
Set<String> keySet;
Bucket prev;
Bucket next;
public Bucket(int cnt){
count = cnt;
keySet = new HashSet<>();
}
}
/** Initialize your data structure here. */
public AllOne() {
head = new Bucket(Integer.MIN_VALUE);
tail = new Bucket(Integer.MAX_VALUE);
head.next = tail;
tail.prev = head;
keyCountMap = new HashMap<>();
countBucketMap = new HashMap<>();
}
/** Inserts a new key <Key> with value 1. Or increments an existing key by 1. */
public void inc(String key) {
if (keyCountMap.containsKey(key)){
changeKey(key, 1);
}
else{
keyCountMap.put(key, 1);
if (head.next.count != 1)
addBucketAfter(new Bucket(1), head);
head.next.keySet.add(key);
countBucketMap.put(1, head.next);
}
}
private void changeKey(String key, int step){
int val = keyCountMap.get(key);
keyCountMap.put(key, val + step);
Bucket cur = countBucketMap.get(val);
Bucket newNode;
if (countBucketMap.containsKey(val + step)){
newNode = countBucketMap.get(val + step);
}else{
newNode = new Bucket(val + step);
countBucketMap.put(val + step, newNode);
addBucketAfter(newNode, step == 1 ? cur : cur.prev);
}
newNode.keySet.add(key);
removeKeyFromBucket(cur,key);
}
private void removeKeyFromBucket(Bucket cur, String key){
cur.keySet.remove(key);
if (cur.keySet.isEmpty()){
countBucketMap.remove(cur.count);
removeBucketFromList(cur);
}
}
private void removeBucketFromList(Bucket bucket){
bucket.prev.next = bucket.next;
bucket.next.prev = bucket.prev;
bucket.next = null;
bucket.prev = null;
}
private void addBucketAfter(Bucket node, Bucket head){
head.next.prev = node;
node.prev = head;
node.next = head.next;
head.next = node;
}
/** Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. */
public void dec(String key) {
if (keyCountMap.containsKey(key)){
int val = keyCountMap.get(key);
if (val == 1){
keyCountMap.remove(key);
removeKeyFromBucket(countBucketMap.get(val), key);
}
else{
changeKey(key, -1);
}
}
}
/** Returns one of the keys with maximal value. */
public String getMaxKey() {
return tail.prev == head ? "" : (String) tail.prev.keySet.iterator().next();
}
/** Returns one of the keys with Minimal value. */
public String getMinKey() {
return head.next == tail ? "" : (String) head.next.keySet.iterator().next();
}
}
Leetcode 355. Design Twitter
思路:
这道题需要维护的操作是getNewsFeed()
,如果把所有用户tweet收集起来,重新排个序,将会非常费时。
题目要求让我收集最近post的Tweet,所以我们可以采取竞选的策略,在所有followed中的用户都会存在自己的Tweet,竞选一次得到一条最新post后,删除最新的post,重新加入队列,进行竞选。
Tweet用什么来维护?可以采用数组,但数组动态扩展性不够强,尤其在这种不断post的应用中,所以用链表来实现。这样,每当有新的Tweet被post,就会加入链表中,采用头插法。而且链表天然的有序,这给竞选节省了很多开销。(避免遍历先前post的Tweet)
代码如下:
public class Twitter {
private static int timeStamp = 0;
Map<Integer, User> userMap;
private class User{
public int id;
public Set<Integer> followed;
public Tweet head;
public User(int id){
this.id = id;
followed = new HashSet<>();
follow(id);
head = null;
}
public void follow(int id){
followed.add(id);
}
public void unfollow(int id){
followed.remove(id);
}
public void postTweet(int id){
Tweet tweet = new Tweet(id);
tweet.next = head;
head = tweet;
}
}
private class Tweet{
public int id;
public int time;
public Tweet next;
public Tweet(int id){
this.id = id;
this.time = timeStamp++;
next= null;
}
}
/** Initialize your data structure here. */
public Twitter() {
userMap = new HashMap<Integer,User>();
}
/** Compose a new tweet. */
public void postTweet(int userId, int tweetId) {
if (!userMap.containsKey(userId)) userMap.put(userId, new User(userId));
userMap.get(userId).postTweet(tweetId);
}
/**
* Retrieve the 10 most recent tweet ids in the user's news feed. Each item
* in the news feed must be posted by users who the user followed or by the
* user herself. Tweets must be ordered from most recent to least recent.
*/
public List<Integer> getNewsFeed(int userId) {
List<Integer> ans = new ArrayList<>();
if (!userMap.containsKey(userId)){
userMap.put(userId, new User(userId));
return ans;
}
Set<Integer> followees = userMap.get(userId).followed;
Queue<Tweet> queue = new PriorityQueue<>((a,b) -> b.time - a.time);
for (int f : followees){
User user = userMap.get(f);
if (user.head != null)
queue.add(user.head);
}
while (!queue.isEmpty() && ans.size() < 10){
Tweet first = queue.poll();
ans.add(first.id);
if (first.next != null)
queue.offer(first.next);
}
return ans;
}
/**
* Follower follows a followee. If the operation is invalid, it should be a
* no-op.
*/
public void follow(int followerId, int followeeId) {
if (!userMap.containsKey(followerId)) userMap.put(followerId, new User(followerId));
if (!userMap.containsKey(followeeId)) userMap.put(followeeId, new User(followeeId));
userMap.get(followerId).follow(followeeId);
}
/**
* Follower unfollows a followee. If the operation is invalid, it should be
* a no-op.
*/
public void unfollow(int followerId, int followeeId) {
if (followeeId == followerId) return;
if (userMap.containsKey(followerId)){
if (userMap.get(followerId).followed.contains(followeeId)) userMap.get(followerId).unfollow(followeeId);
}
}
}
Leetcode 460. LFU Cache
思路:
和第三题一致,使用一个双向链表来实现元素的浮动,每当容量满时,删除队头的元素即可,而最近使用过的key都会向下浮动。
代码如下:
public class LFUCache {
class Node{
public int count;
public LinkedHashSet<Integer> keys;
public Node next;
public Node prev;
public Node(int count){
this.count = count;
keys = new LinkedHashSet<>();
prev = next = null;
}
}
private Node head = null;
private int cap = 0;
Map<Integer, Integer> cache;
Map<Integer, Node> nodeHash;
public LFUCache(int capacity) {
cache = new HashMap<>();
nodeHash = new HashMap<>();
this.cap = capacity;
}
private void increaseCount(int key){
Node node = nodeHash.get(key);
node.keys.remove(key);
if (node.next == null){
node.next = new Node(node.count + 1);
node.next.prev = node;
node.next.keys.add(key);
}
else if (node.next.count == node.count + 1){
node.next.keys.add(key);
}
else{
Node tmp = new Node(node.count + 1);
tmp.keys.add(key);
tmp.prev = node;
tmp.next = node.next;
node.next.prev = tmp;
node.next = tmp;
}
nodeHash.put(key, node.next);
if (node.keys.isEmpty()) remove(node);
}
private void addToHead(int key) {
if (head == null){
head = new Node(0);
head.keys.add(key);
}else if (head.count > 0){
Node node = new Node(0);
node.keys.add(key);
node.next = head;
head.prev = node;
head = node;
}else{
head.keys.add(key);
}
nodeHash.put(key, head);
}
private void removeOld(){
if (head == null) return;
int old = head.keys.iterator().next();
head.keys.remove(old);
if (head.keys.size() == 0) remove(head);
nodeHash.remove(old);
cache.remove(old);
}
private void remove(Node node) {
if (node.prev == null){
head = node.next;
}else{
node.prev.next = node.next;
}
if (node.next != null){
node.next.prev = node.prev;
}
}
public int get(int key) { //update
if (!cache.containsKey(key)) return -1;
increaseCount(key);
return cache.get(key);
}
public void put(int key, int value) { //remove
if (cap == 0) return;
if (cache.containsKey(key)){
cache.put(key, value);
}else{
if (cache.size() < cap){
cache.put(key, value);
}else{
removeOld();
cache.put(key, value);
}
addToHead(key);
}
increaseCount(key);
}
}
Leetcode 146. LRU Cache
思路:
这道题要比上一题简单,思路很简单,一旦有get操作和put操作,就把当前结点在链表中的位置调至链表末尾。当超过容量限制时,直接删除头元素。
public class LRUCache {
class Node{
public int key;
public Node next;
public Node prev;
public Node(int key){
this.key = key;
next = null;
prev = null;
}
}
private Node head = null;
private Node tail = null;
private int cap = 0;
Map<Integer, Integer> cache;
Map<Integer, Node> nodeMap;
public LRUCache(int capacity) {
cache = new HashMap<>();
nodeMap =new HashMap<>();
head = new Node(Integer.MAX_VALUE);
tail = new Node(Integer.MAX_VALUE);
head.next = tail;
tail.prev = head;
this.cap = capacity;
}
private void update(int key){
Node node;
if (nodeMap.containsKey(key)){
node = nodeMap.get(key);
node.prev.next = node.next;
node.next.prev = node.prev;
}
else{
node = new Node(key);
}
tail.prev.next = node;
node.prev = tail.prev;
node.next = tail;
tail.prev = node;
nodeMap.put(key, node);
}
private void remove(){
Node node = head.next;
head.next = node.next;
node.next.prev = head;
cache.remove(node.key);
nodeMap.remove(node.key);
}
public int get(int key) {
if (!cache.containsKey(key)) return -1;
update(key);
return cache.get(key);
}
public void put(int key, int value) {
if (cap == 0) return;
if (cache.containsKey(key)){
cache.put(key, value);
}
else{
if (cache.size() < cap){
cache.put(key, value);
}
else{
remove();
cache.put(key,value);
}
}
update(key);
}
}