Hadoop配置变量 - CentOS
简介
Hadoop是一个开源的分布式计算框架,它被广泛应用于大数据处理和分析任务中。在CentOS操作系统中,我们可以通过配置一些环境变量来使用Hadoop。本文将介绍如何在CentOS中配置Hadoop环境变量,并提供相关的代码示例。
流程图
flowchart TD
A[安装Hadoop] --> B[配置环境变量]
B --> C[启动Hadoop]
状态图
stateDiagram
[*] --> 安装Hadoop
安装Hadoop --> 配置环境变量
配置环境变量 --> 启动Hadoop
启动Hadoop --> [*]
安装Hadoop
首先,我们需要在CentOS上安装Hadoop。以下是安装Hadoop的步骤:
-
下载Hadoop安装包
wget
-
解压安装包
tar -xvf hadoop-3.3.0.tar.gz
-
移动解压后的文件夹到指定目录
mv hadoop-3.3.0 /usr/local/hadoop
配置环境变量
配置Hadoop环境变量是为了让系统能够找到Hadoop的安装路径。以下是配置环境变量的步骤:
-
打开
~/.bashrc
文件vi ~/.bashrc
-
在文件末尾添加以下内容
export HADOOP_HOME=/usr/local/hadoop export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
-
使环境变量生效
source ~/.bashrc
启动Hadoop
完成上述步骤后,我们可以启动Hadoop并开始使用。以下是启动Hadoop的步骤:
-
格式化Hadoop文件系统
hdfs namenode -format
-
启动Hadoop
start-all.sh
-
检查Hadoop是否成功启动
jps
如果一切正常,您应该能够看到类似以下输出:
DataNode
NameNode
ResourceManager
SecondaryNameNode
NodeManager
代码示例
以下是一个使用Hadoop的简单Java代码示例,用于统计文本文件中每个单词的出现次数:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath