实现 Flink CDC MySQL Binlog

简介

Flink CDC(Change Data Capture)是 Apache Flink 提供的一种用于抓取和处理数据变化的功能。通过 Flink CDC,我们可以将数据源中的数据变化捕获并实时处理,从而实现数据的实时同步、ETL(Extract, Transform, Load)等应用场景。本文将介绍如何使用 Flink CDC 来处理 MySQL Binlog 变化数据。

步骤

步骤 描述
步骤1 设置 Flink CDC 环境
步骤2 导入依赖
步骤3 编写 Flink Job
步骤4 提交 Flink Job
步骤5 监控 Flink Job 运行情况

步骤详解

步骤1:设置 Flink CDC 环境

首先,我们需要在项目中引入 Flink CDC 的相关依赖,以及 MySQL Connector 的依赖。在项目的 pom.xml 文件中添加以下代码:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-cdc</artifactId>
    <version>${flink.version}</version>
</dependency>

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-jdbc</artifactId>
    <version>${flink.version}</version>
</dependency>

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>${mysql.version}</version>
</dependency>

其中 ${flink.version}${mysql.version} 根据实际情况替换为对应的版本号。

步骤2:导入依赖

在 Java 代码中导入所需的依赖:

import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.cdc.CdcSource;
import org.apache.flink.streaming.connectors.cdc.debezium.DebeziumDeserializationSchema;
import org.apache.flink.streaming.connectors.cdc.debezium.DebeziumSourceFunction;
import org.apache.flink.streaming.connectors.cdc.debezium.DebeziumSourceFunctionWrapper;
import org.apache.flink.streaming.connectors.cdc.table.LookupConfig;
import org.apache.flink.streaming.connectors.cdc.table.LookupConfigFactory;
import org.apache.flink.streaming.connectors.cdc.table.TableLookupFunction;
import org.apache.flink.streaming.connectors.cdc.table.TableSchemaConverter;
import org.apache.flink.streaming.connectors.cdc.table.TableLookupFunctionFactory;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.bridge.java.table.LookupTableSource;
import org.apache.flink.table.api.bridge.java.table.TableEnvironmentExtension;
import org.apache.flink.table.api.bridge.java.table.TableEnvironmentFactory;
import org.apache.flink.table.api.bridge.java.table.TableLookupJoinUtil;
import org.apache.flink.table.api.bridge.java.table.TableSinkFactory;
import org.apache.flink.table.api.bridge.java.table.TableSourceFactory;
import org.apache.flink.table.api.config.ExecutionConfigOptions;
import org.apache.flink.table.catalog.Catalog;
import org.apache.flink.table.catalog.CatalogFactory;
import org.apache.flink.table.catalog.GenericInMemoryCatalog;
import org.apache.flink.table.connector.source.LookupTableSourceFunction;
import org.apache.flink.table.connector.source.LookupTableSourceFunctionFactory;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.LogicalType;
import org.apache.flink.table.types.logical.RowType;

步骤3:编写 Flink Job

在 Flink Job 中,我们需要设置 MySQL 连接信息,并创建 CDC Source。以下是一个示例:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(10000);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, Time.seconds(5)));
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);

EnvironmentSettings settings = EnvironmentSettings.newInstance()
        .useBlinkPlanner()
        .inStreamingMode()
        .build();

StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings);

String server = "mysql-server";
int port = 3306;
String username = "root";
String password = "password";
String database = "my_database";

String serverId = "server-id";

CdcSource.Builder<byte[], DebeziumDeserialization