Markov Transition Field,马尔可夫转移场(matlab版复现:https://www.cnblogs.com/huakaifugui/p/17493330.html)将一维时间序列转成二维数据可以对原数据进行更好地表征,从而基于新的表征结合深度学习机器视觉技术来发掘更多的规律和信息。这使得Markov Transition Field,马尔可夫转移场在金融,能源电力,水利,气象、机械设备,交通等领域时间序列分析中有广阔的运用前景。
参考文献:Z. Wang and T. Oates, “Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks,” in 2015 Association for the Advancement of Artificial Intelligence, 2015, p. 7.