思路:模板题
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <set>
#include <ctime>
#include <cmath>
#include <cctype>
using namespace std;
#define maxn 110
#define LL long long
int cas=1,T;
const int maxm = 10010;
struct Edge
{
int u,v;
int dist;
Edge(){}
Edge(int u,int v,int d):u(u),v(v),dist(d){}
bool operator < (const Edge&rhs)const
{
return dist < rhs.dist;
}
};
int n,m;
Edge edges[maxm];
int pre[maxn];
int Find(int x)
{
return pre[x]==-1?x:Find(pre[x]);
}
void init()
{
m=0;
memset(pre,-1,sizeof(pre));
}
void AddEdge(int u,int v,double dist)
{
edges[m++]=Edge(u,v,dist);
}
int Kruskal()
{
int sum = 0;
int cnt = 0;
sort(edges,edges+m);
for (int i = 0;i<m;i++)
{
int u = edges[i].u;
int v = edges[i].v;
if (Find(u) != Find(v))
{
pre[Find(u)] = Find(v);
sum+=edges[i].dist;
if (++cnt >= n-1)
break;
}
}
return sum;
}
int main()
{
//freopen("in","r",stdin);
while(scanf("%d",&n) && n)
{
init();
for (int i = 0;i<n*(n-1)/2;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
AddEdge(a,b,c);
}
printf("%d\n",Kruskal());
}
//printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);
return 0;
}
Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5