思路:一棵树有2(n-1)个度,每个度都有它的权值,那么就相当于一个容量为2*(n-1)的背包,物品的体积是度数,可是这样有可能会出现没有被选的度数,那么我们就先每个点都分配一个度,然后就是完全背包啦



#include<bits/stdc++.h>
using namespace std;
const int maxn = 25000;
int a[maxn];
int dp[maxn];
int main()
{
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i = 0;i<n-1;i++)
            scanf("%d",&a[i]);
        int V = 2*(n-1)-n;
		for(int i = 0;i<=n;i++)
			dp[i]=-1e9;
        dp[0]=a[0]*n;
        for(int i=1;i<n-1;i++)
            a[i]-=a[0];
		for(int i = 1;i<=V;i++)
			for(int j = i;j<=V;j++)
				dp[j]=max(dp[j],dp[j-i]+a[i]);
		printf("%d\n",dp[V]);
    }
    return 0;
}






Description



In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree. 


You find a partial tree on the way home. This tree has 


HDU 5534 Partial Tree(背包)_i++

 nodes but lacks of 


HDU 5534 Partial Tree(背包)_i++

HDU 5534 Partial Tree(背包)_c++_03

HDU 5534 Partial Tree(背包)_i++_04

 edges. You want to complete this tree by adding 


HDU 5534 Partial Tree(背包)_i++

HDU 5534 Partial Tree(背包)_c++_03

HDU 5534 Partial Tree(背包)_i++_04

 edges. There must be exactly one path between any two nodes after adding. As you know, there are 


HDU 5534 Partial Tree(背包)_i++

HDU 5534 Partial Tree(背包)_c++_09

HDU 5534 Partial Tree(背包)_c++_10

HDU 5534 Partial Tree(背包)_权值_11

 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is 


HDU 5534 Partial Tree(背包)_c++_12

HDU 5534 Partial Tree(背包)_i++_13

HDU 5534 Partial Tree(背包)_权值_14

HDU 5534 Partial Tree(背包)_权值_15

, where 


HDU 5534 Partial Tree(背包)_c++_12

 is a predefined function and 


HDU 5534 Partial Tree(背包)_权值_14


Input


HDU 5534 Partial Tree(背包)_权值_18

 indicating the total number of test cases. 

Each test case starts with an integer 


HDU 5534 Partial Tree(背包)_i++

 in one line, 

then one line with 


HDU 5534 Partial Tree(背包)_i++

HDU 5534 Partial Tree(背包)_c++_03

HDU 5534 Partial Tree(背包)_i++_04

 integers 


HDU 5534 Partial Tree(背包)_c++_12

HDU 5534 Partial Tree(背包)_i++_13

HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_权值_15

HDU 5534 Partial Tree(背包)_权值_27

HDU 5534 Partial Tree(背包)_c++_12

HDU 5534 Partial Tree(背包)_i++_13

HDU 5534 Partial Tree(背包)_c++_30

HDU 5534 Partial Tree(背包)_权值_15

HDU 5534 Partial Tree(背包)_权值_27

HDU 5534 Partial Tree(背包)_c++_33

HDU 5534 Partial Tree(背包)_权值_27

HDU 5534 Partial Tree(背包)_c++_12

HDU 5534 Partial Tree(背包)_i++_13

HDU 5534 Partial Tree(背包)_i++

HDU 5534 Partial Tree(背包)_c++_03

HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_权值_15




HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_i++_42

HDU 5534 Partial Tree(背包)_权值_18

HDU 5534 Partial Tree(背包)_i++_42

HDU 5534 Partial Tree(背包)_c++_30

HDU 5534 Partial Tree(背包)_i++_46

HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_i++_48

 


HDU 5534 Partial Tree(背包)_c++_30

HDU 5534 Partial Tree(背包)_i++_42

HDU 5534 Partial Tree(背包)_i++

HDU 5534 Partial Tree(背包)_i++_42

HDU 5534 Partial Tree(背包)_c++_30

HDU 5534 Partial Tree(背包)_i++_46

HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_i++_48

 


HDU 5534 Partial Tree(背包)_i++_46

HDU 5534 Partial Tree(背包)_i++_42

HDU 5534 Partial Tree(背包)_c++_12

HDU 5534 Partial Tree(背包)_i++_13

HDU 5534 Partial Tree(背包)_权值_61

HDU 5534 Partial Tree(背包)_权值_15

HDU 5534 Partial Tree(背包)_i++_42

HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_i++_46

HDU 5534 Partial Tree(背包)_i++_46

HDU 5534 Partial Tree(背包)_i++_46

HDU 5534 Partial Tree(背包)_i++_46

 

There are at most 


HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_i++_46

 test cases with 


HDU 5534 Partial Tree(背包)_i++

HDU 5534 Partial Tree(背包)_权值_72

HDU 5534 Partial Tree(背包)_i++_04

HDU 5534 Partial Tree(背包)_i++_46

HDU 5534 Partial Tree(背包)_i++_46

.

Output


For each test case, please output the maximum coolness of the completed tree in one line.


Sample Input


232 1 4 5 1 4


Sample Output


519