题意:

给你一个只含有括号的字符串,你可以将一种类型的左括号改成另外一种类型,右括号改成另外一种右括号

问你最少修改多少次,才能使得这个字符串匹配,输出次数


思路:


用stack,每次将左括号压进stack里面,遇到右括号就判断一下就好了

非法就很简单,看看栈最后是否还有,看看右括号的时候,左括号的栈是否为空



#include<bits/stdc++.h>
using namespace std;

string s;
stack<char> S;
int main()
{
    cin>>s;
    int ans = 0;
    for(int i=0;i<s.size();i++)
    {

        if(s[i]==']')
        {
            if(S.size()==0)return puts("Impossible");
            if(S.top()=='[')
                S.pop();
            else
            {
                ans++;
                S.pop();
            }
        }
        else if(s[i]==')')
        {
            if(S.size()==0)return puts("Impossible");
             if(S.top()=='(')
                S.pop();
            else
            {
                ans++;
                S.pop();
            }
        }

        else if(s[i]=='>')
        {
            if(S.size()==0)return puts("Impossible");
            if(S.top()=='<')
                S.pop();
            else
            {
                ans++;
                S.pop();
            }
        }
        else if(s[i]=='}')
        {
            if(S.size()==0)return puts("Impossible");
             if(S.top()=='{')
                S.pop();
            else
            {
                ans++;
                S.pop();
            }
        }
        else S.push(s[i]);
    }
    if(S.size()!=0)return puts("Impossible");
    cout<<ans<<endl;
}






Description



You are given string s consists of opening and closing brackets of four kinds <>, {}, [], (). There are two types of brackets: opening and closing. You can replace any bracket by another of the same type. For example, you can replace < by the bracket {, but you can't replace it by ) or >.

The following definition of a regular bracket sequence is well-known, so you can be familiar with it.

Let's define a regular bracket sequence (RBS). Empty string is RBS. Let s1 and s2 be a RBS then the strings <s1>s2, {s1}s2, [s1]s2,(s1)s2

For example the string "[[(){}]<>]" is RBS, but the strings "[)()" and "][()()" are not.

Determine the least number of replaces to make the string s



Input



The only line contains a non empty string s, consisting of only opening and closing brackets of four kinds. The length of s does not exceed 106.



Output



If it's impossible to get RBS from s print Impossible.

Otherwise print the least number of replaces needed to get RBS from s.



Sample Input



Input



[<}){}



Output



2



Input



{()}[]



Output



0



Input



]]



Output



Impossible