我们在用java开发的时候,不管怎么开发基础的东西需要不断的深入的了解。所以现在总结一些容易混淆,或者难理解的知识点。

一:final,static,this,super 关键字总结

   final关键字主要用在三个地方:变量、方法、类。

  1. 对于一个final变量,如果是基本数据类型的变量,则其数值一旦在初始化之后便不能更改;如果是引用类型的变量,则在对其初始化之后便不能再让其指向另一个对象。
  2. 当用final修饰一个类时,表明这个类不能被继承。final类中的所有成员方法都会被隐式地指定为final方法
  3. 使用final方法的原因有两个。第一个原因是把方法锁定,以防任何继承类修改它的含义;第二个原因是效率。在早期的Java实现版本中,会将final方法转为内嵌调用。但是如果方法过于庞大,可能看不到内嵌调用带来的任何性能提升(现在的Java版本已经不需要使用final方法进行这些优化了)。类中所有的private方法都隐式地指定为final。

   static 关键字主要有以下四种使用场景:

  1. 修饰成员变量和成员方法: 被 static 修饰的成员属于类,不属于单个这个类的某个对象,被类中所有对象共享,可以并且建议通过类名调用。被static 声明的成员变量属于静态成员变量,静态变量 存放在 Java 内存区域的方法区。调用格式:类名.静态变量名 类名.静态方法名()
  2. 静态代码块: 静态代码块定义在类中方法外, 静态代码块在非静态代码块之前执行(静态代码块—>非静态代码块—>构造方法)。 该类不管创建多少对象,静态代码块只执行一次.
  3. 静态内部类(static修饰类的话只能修饰内部类): 静态内部类与非静态内部类之间存在一个最大的区别: 非静态内部类在编译完成之后会隐含地保存着一个引用,该引用是指向创建它的外围类,但是静态内部类却没有。没有这个引用就意味着:1. 它的创建是不需要依赖外围类的创建。2. 它不能使用任何外围类的非static成员变量和方法。
  4. 静态导包(用来导入类中的静态资源,1.5之后的新特性): 格式为:import static 这两个关键字连用可以指定导入某个类中的指定静态资源,并且不需要使用类名调用类中静态成员,可以直接使用类中静态成员变量和成员方法。

静态代码块对于定义在它之后的静态变量,可以赋值,但是不能访问.

   this关键字用于引用类的当前实例

   super关键字用于从子类访问父类的变量和方法。 

使用 this 和 super 要注意的问题:

  • 在构造器中使用 super() 调用父类中的其他构造方法时,该语句必须处于构造器的首行,否则编译器会报错。另外,this 调用本类中的其他构造方法时,也要放在首行。
  • this、super不能用在static方法中。

总结:

被 static 修饰的成员属于类,不属于单个这个类的某个对象,被类中所有对象共享。而 this 代表对本类对象的引用,指向本类对象;而 super 代表对父类对象的引用,指向父类对象;所以, this和super是属于对象范畴的东西,而静态方法是属于类范畴的东西

二:反射机制

    JAVA 反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为 java 语言的反射机制。

1:获取 Class 对象的两种方式

   (1):知道具体类的情况下可以使用: 

  

Class alunbarClass = TargetObject.class;

但是我们一般是不知道具体类的,基本都是通过遍历包下面的类来获取 Class 对象

(2):通过 Class.forName()传入类的路径获取:

Class alunbarClass1 = Class.forName("cn.javaguide.TargetObject");

2:反射是框架设计的灵魂。

在我们平时的项目开发过程中,基本上很少会直接使用到反射机制,但这不能说明反射机制没有用,实际上有很多设计、开发都与反射机制有关,例如模块化的开发,通过反射去调用对应的字节码;动态代理设计模式也采用了反射机制,还有我们日常使用的 Spring/Hibernate 等框架也大量使用到了反射机制。

三:说说List,Set,Map三者的区别?

  • List(对付顺序的好帮手): List接口存储一组不唯一(可以有多个元素引用相同的对象),有序的对象
  • Set(注重独一无二的性质): 不允许重复的集合。不会有多个元素引用相同的对象。
  • Map(用Key来搜索的专家): 使用键值对存储。Map会维护与Key有关联的值。两个Key可以引用相同的对象,但Key不能重复,典型的Key是String类型,但也可以是任何对象。

四:如何选用集合?

主要根据集合的特点来选用,比如我们需要根据键值获取到元素值时就选用Map接口下的集合,需要排序时选择TreeMap,不需要排序时就选择HashMap,需要保证线程安全就选用ConcurrentHashMap.当我们只需要存放元素值时,就选择实现Collection接口的集合,需要保证元素唯一时选择实现Set接口的集合比如TreeSet或HashSet,不需要就选择实现List接口的比如ArrayList或LinkedList,然后再根据实现这些接口的集合的特点来选用。

五:并发基础

1;线程和进程

 (1):进程

进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。

(2):线程

线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的方法区资源,但每个线程有自己的程序计数器虚拟机栈本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。

总结: 线程 是 进程 划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响。线程执行开销小,但不利于资源的管理和保护;而进程正相反

(3)为什么程序计算器,虚拟机栈和本地方法栈是线程是线程是私有的。

程序计数器私有主要是为了线程切换后能恢复到正确的执行位置

虚拟机栈: 每个 Java 方法在执行的同时会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。

本地方法栈: 和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。

所以,为了保证线程中的局部变量不被别的线程访问到,虚拟机栈和本地方法栈是线程私有的。

(4)线程总结:

堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。

(5):认识线程死锁

线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。

产生死锁必须具备以下四个条件:

  1. 互斥条件:该资源任意一个时刻只由一个线程占用。
  2. 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
  3. 不剥夺条件:线程已获得的资源在末使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
  4. 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

避免线程死锁

  1. 破坏互斥条件 :这个条件我们没有办法破坏,因为我们用锁本来就是想让他们互斥的(临界资源需要互斥访问)。
  2. 破坏请求与保持条件 :一次性申请所有的资源。
  3. 破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
  4. 破坏循环等待条件 :靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件

如下代码,会出现线程死锁:

public class DeadLockDemo {
    private static Object resource1 = new Object();//资源 1
    private static Object resource2 = new Object();//资源 2

    public static void main(String[] args) {
        new Thread(() -> {
            synchronized (resource1) {
                System.out.println(Thread.currentThread() + "get resource1");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resource2");
                synchronized (resource2) {
                    System.out.println(Thread.currentThread() + "get resource2");
                }
            }
        }, "线程 1").start();

        new Thread(() -> {
            synchronized (resource2) {
                System.out.println(Thread.currentThread() + "get resource2");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resource1");
                synchronized (resource1) {
                    System.out.println(Thread.currentThread() + "get resource1");
                }
            }
        }, "线程 2").start();
    }
}

但是我们代码改下。

public class DeadLockDemo {
	 private static Object resource1 = new Object();//资源 1
	    private static Object resource2 = new Object();//资源 2

	    private static SimpleDateFormat sdf=new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");
	    		
	    public static void main(String[] args) {
	        new Thread(() -> {
	            synchronized (resource1) {
	                System.out.println(Thread.currentThread() + "get resource1===>"+sdf.format(new Date()));
	                try {
	                    Thread.sleep(1000);
	                } catch (InterruptedException e) {
	                    e.printStackTrace();
	                }
	                System.out.println(Thread.currentThread() + "waiting get resource2===>"+sdf.format(new Date()));
	                synchronized (resource2) {
	                    System.out.println(Thread.currentThread() + "get resource2===>"+sdf.format(new Date()));
	                }
	            }
	        }, "线程 1").start();

	        new Thread(() -> {
	            synchronized (resource1) {
	                System.out.println(Thread.currentThread() + "get resource1===>"+sdf.format(new Date()));
	                try {
	                    Thread.sleep(1000);
	                } catch (InterruptedException e) {
	                    e.printStackTrace();
	                }
	                System.out.println(Thread.currentThread() + "waiting get resource2===>"+sdf.format(new Date()));
	                synchronized (resource2) {
	                    System.out.println(Thread.currentThread() + "get resource2===>"+sdf.format(new Date()));
	                }
	            }
	        }, "线程 2").start();
	    }
}

这样就避免了死锁

(6):说说 sleep() 方法和 wait() 方法区别和共同点?

  • 两者最主要的区别在于:sleep 方法没有释放锁,而 wait 方法释放了锁 。
  • 两者都可以暂停线程的执行。
  • Wait 通常被用于线程间交互/通信,sleep 通常被用于暂停执行。
  • wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify() 或者 notifyAll() 方法。sleep() 方法执行完成后,线程会自动苏醒。或者可以使用 wait(long timeout)超时后线程会自动苏醒。

(7): 为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法?

这是另一个非常经典的 java 多线程面试问题,而且在面试中会经常被问到。很简单,但是很多人都会答不上来!

new 一个 Thread,线程进入了新建状态;调用 start() 方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。 而直接执行 run() 方法,会把 run 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。

总结: 调用 start 方法方可启动线程并使线程进入就绪状态,而 run 方法只是 thread 的一个普通方法调用,还是在主线程里执行。

2:synchronized 

(1)synchronized关键字

synchronized关键字解决的是多个线程之间访问资源的同步性,synchronized关键字可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。

(2)synchronized关键字最主要的三种使用方式:

  • 修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁
  • 修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例,因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。所以如果一个线程 A 调用一个实例对象的非静态 synchronized 方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁
  • 修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。

总结: synchronized 关键字加到 static 静态方法和 synchronized(class)代码块上都是是给 Class 类上锁。synchronized 关键字加到实例方法上是给对象实例上锁。尽量不要使用 synchronized(String a) 因为JVM中,字符串常量池具有缓存功能!

3:ThreadLocal

(1):使用ThreadLocal的原因

ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。

如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get() 和 set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。

4:如果不是线程安全的,我们可以做什么东西来使我们的程序变得线程安全。

  • 如果是集合,我们可以考虑一下juc包下的集合类(如CurrentHashMap)。
  • 如果是数值/对象,我们可以考虑一下atomic包下的类。
  • 如果是涉及到线程的重复利用,我们可以考虑一下是否要用线程池。
  • 如果涉及到对线程的控制(比如一次能使用多少个线程,当前线程触发的条件是否依赖其他线程的结果),我们可以考虑CountDownLatch/Semaphore等等
  • 如果synchronized无法满足你,我们可以考虑lock包下的类

5:锁的种类

Java锁的种类:自旋锁、互斥锁、可重入锁、悲观锁、乐观锁(详情如下)

自旋锁
自旋锁是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。如下

public class SpinLock {
    private AtomicReference<Thread> sign = new AtomicReference<>();
    
    public void lock() {
        Thread current = Thread.currentThread();
        while (!sign.compareAndSet(null, current)) {
        }
    }
    
    public void unlock() {
        Thread current = Thread.currentThread();
        sign.compareAndSet(current, null);
    }

互斥锁
所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源Lock接口及其实现类ReentrantLock

可重入锁
可重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。
在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁

悲观锁
.悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系 统不会修改数据)。

乐观锁
相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库 性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。 而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如 果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。