此题一开始我采用最笨的方法去实现,利用排序将两个数组合并成一个数组,然后返回中位数:

class Solution {
public:
    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int *a=new int[m+n];
        
        memcpy(a,A,sizeof(int)*m);
        memcpy(a+m,B,sizeof(int)*n);
        
        sort(a,a+n+m);
        
        double median=(double) ((n+m)%2? a[(n+m)>>1]:(a[(n+m-1)>>1]+a[(n+m)>>1])/2.0);
        
        delete a;
        
        return median;
    }
};

首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。

证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。

当A[k/2-1]>B[k/2-1]时存在类似的结论。

当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:

如果A或者B为空,则直接返回B[k-1]或者A[k-1];
如果k为1,我们只需要返回A[0]和B[0]中的较小值;
如果A[k/2-1]=B[k/2-1],返回其中一个;
最终实现的代码为:
 

double findKth(int a[], int m, int b[], int n, int k)
{
	//always assume that m is equal or smaller than n
	if (m > n)
		return findKth(b, n, a, m, k);
	if (m == 0)
		return b[k - 1];
	if (k == 1)
		return min(a[0], b[0]);
	//divide k into two parts
	int pa = min(k / 2, m), pb = k - pa;
	if (a[pa - 1] < b[pb - 1])
		return findKth(a + pa, m - pa, b, n, k - pa);
	else if (a[pa - 1] > b[pb - 1])
		return findKth(a, m, b + pb, n - pb, k - pb);
	else
		return a[pa - 1];
}
 
class Solution
{
public:
	double findMedianSortedArrays(int A[], int m, int B[], int n)
	{
		int total = m + n;
		if (total & 0x1)
			return findKth(A, m, B, n, total / 2 + 1);
		else
			return (findKth(A, m, B, n, total / 2)
					+ findKth(A, m, B, n, total / 2 + 1)) / 2;
	}
};

在最好情况下,每次都有k一半的元素被删除,所以算法复杂度为logk,由于求中位数时k为(m+n)/2,所以算法复杂度为log(m+n)。