基于opencv的车牌识别系统(UI界面采用tkinter设计)

本系统采用python语言搭配opencv进行开发,在传统的车牌识别项目上进行改进,开发独特的GUI界面,方便使用者的使用。
需要源码的朋友点赞、关注我、再私信我获取源码,如果未能及时回复可以留下邮箱耐心等待奥

先上运行截图(下图分别为图片识别和摄像头识别结果)

opencv 建立图层 opencv界面设计_python


opencv 建立图层 opencv界面设计_人工智能_02

项目结构

项目结构很简单主要由以下三种文件构成:

  1. predict.py
  2. surface.py
  3. svmchinese.dat(用于存放训练好的模型)

其余文件还包括用于训练和测试的图片数据集,这里就不一一列举了

项目实现的流程

利用tkinter设计UI界面包括主窗口、按钮(button)、摄像头界面,识别结果的可视化等控件。

class Surface(ttk.Frame):
	pic_path = ""
	viewhigh = 400   #摄像头
	viewwide = 400
	update_time = 0
	thread = None
	thread_run = False
	camera = None
	color_transform = {"green":("绿牌","#55FF55"), "yello":("黄牌","#FFFF00"), "blue":("蓝牌","#6666FF")}
		
	def __init__(self, win):
		ttk.Frame.__init__(self, win)
		frame_left = ttk.Frame(self)
		frame_right1 = ttk.Frame(self)
		frame_right2 = ttk.Frame(self)
		win.title("车牌识别系统")
		win.geometry('700x500')
		self.pack(fill=tk.BOTH, expand=tk.YES, padx="5", pady="5")
		frame_left.pack(side=LEFT,expand=1,fill=BOTH)
		frame_right1.pack(side=TOP,expand=1,fill=tk.Y)
		frame_right2.pack(side=RIGHT,expand=0.5)
		ttk.Label(frame_left, text='原图:').pack(anchor="nw") 
		ttk.Label(frame_right1, text='截取车牌:').grid(column=0, row=0, sticky=tk.W)
		
		from_pic_ctl = ttk.Button(frame_right2, text="图片识别", width=10, command=self.from_pic)
		from_vedio_ctl = ttk.Button(frame_right2, text="摄像头识别", width=10, command=self.from_vedio)
		self.image_ctl = ttk.Label(frame_left)
		self.image_ctl.pack(anchor="nw")
		
		self.roi_ctl = ttk.Label(frame_right1)
		self.roi_ctl.grid(column=0, row=1, sticky=tk.W)
		ttk.Label(frame_right1, text='获取结果:').grid(column=0, row=2, sticky=tk.W)
		self.r_ctl = ttk.Label(frame_right1, text="")
		self.r_ctl.grid(column=0, row=3, sticky=tk.W)
		self.color_ctl = ttk.Label(frame_right1, text="", width="20")
		self.color_ctl.grid(column=0, row=4, sticky=tk.W)
		from_vedio_ctl.pack(anchor="se", pady="5")
		from_pic_ctl.pack(anchor="se", pady="5")
		self.predictor = predict.CardPredictor()
		self.predictor.train_svm()

打开识别图片的按钮点击事件的设计

def get_imgtk(self, img_bgr):
		img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
		im = Image.fromarray(img)
		imgtk = ImageTk.PhotoImage(image=im)
		wide = imgtk.width()
		high = imgtk.height()
		if wide > self.viewwide or high > self.viewhigh:
			wide_factor = self.viewwide / wide
			high_factor = self.viewhigh / high
			factor = min(wide_factor, high_factor)
			
			wide = int(wide * factor)
			if wide <= 0 : wide = 1
			high = int(high * factor)
			if high <= 0 : high = 1
			im=im.resize((wide, high), Image.ANTIALIAS)
			imgtk = ImageTk.PhotoImage(image=im)
		return imgtk

打开摄像头识别按钮点击事件的设计

def from_vedio(self):
		if self.thread_run:
			return
		if self.camera is None:
			self.camera = cv2.VideoCapture(0)
			if not self.camera.isOpened():
				mBox.showwarning('警告', '摄像头打开失败!')
				self.camera = None
				return
		self.thread = threading.Thread(target=self.vedio_thread, args=(self,))
		self.thread.setDaemon(True)
		self.thread.start()
		self.thread_run = True

打开摄像头或者图片识别,按识别的方式采用不同方法对捕捉到的画面结果进行识别:

def from_pic(self):
		self.thread_run = False
		self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
		if self.pic_path:
			img_bgr = predict.imreadex(self.pic_path)
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
			for resize_rate in resize_rates:
				print("resize_rate:", resize_rate)
				r, roi, color = self.predictor.predict(img_bgr, resize_rate)
				if r:
					break
			self.show_roi(r, roi, color)

	@staticmethod
	def vedio_thread(self):
		self.thread_run = True
		predict_time = time.time()
		while self.thread_run:
			_, img_bgr = self.camera.read()
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			if time.time() - predict_time > 2:
				r, roi, color = self.predictor.predict(img_bgr)
				self.show_roi(r, roi, color)
				predict_time = time.time()
		print("run end")

最后设计关闭窗口的事件:

def close_window():
	print("destroy")
	if surface.thread_run :
		surface.thread_run = False
		surface.thread.join(2.0)
	win.destroy()

预测模型的设计

预测模型设计思路为:
1、训练设计所需图片数据的尺寸,并读取图片数据;
2、根据设定的阈值和图片直方图,找出波峰,用于分隔字符;
3、根据找出的波峰,分隔图片,从而得到逐个字符图片;
4、将来自opencv的sample,用于svm训练;
5、训练svm、字符识别;
6、高斯去噪、去掉图像中不会是车牌的区域、找到图像边缘、使用开运算和闭运算让图像边缘成为一个整体;
7、查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中、矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位、识别到的字符、定位的车牌图像、车牌颜色;

class CardPredictor:
	def __init__(self):
		#车牌识别的部分参数保存在js中,便于根据图片分辨率做调整
		f = open('config.js')
		j = json.load(f)  #读取文件
		for c in j["config"]:
			if c["open"]:
				self.cfg = c.copy()
				break
		else:
			raise RuntimeError('没有设置有效配置参数')

	def __del__(self):
		self.save_traindata()
	def train_svm(self):
		self.model = SVM(C=1, gamma=0.5)   #识别英文字母和数字,c表示容忍度,c越高,说明越不能容忍出现误差
		self.modelchinese = SVM(C=1, gamma=0.5)  #识别中文
		if os.path.exists("svm.dat"):
			self.model.load("svm.dat")
		else:
			chars_train = []
			chars_label = []
			
			for root, dirs, files in os.walk("train\\chars2"):
				if len(os.path.basename(root)) > 1:
					continue
				root_int = ord(os.path.basename(root))
				for filename in files:
					filepath = os.path.join(root,filename)
					digit_img = cv2.imread(filepath)
					digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
					chars_train.append(digit_img)
					chars_label.append(root_int)
			
			chars_train = list(map(deskew, chars_train))
			chars_train = preprocess_hog(chars_train)
			#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
			chars_label = np.array(chars_label)
			self.model.train(chars_train, chars_label)
		if os.path.exists("svmchinese.dat"):
			self.modelchinese.load("svmchinese.dat")
		else:
			chars_train = []
			chars_label = []
			for root, dirs, files in os.walk("train\\charsChinese"):
				if not os.path.basename(root).startswith("zh_"):
					continue
				pinyin = os.path.basename(root)
				index = provinces.index(pinyin) + PROVINCE_START + 1 #1是拼音对应的汉字
				for filename in files:
					filepath = os.path.join(root,filename)
					digit_img = cv2.imread(filepath)
					digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
					chars_train.append(digit_img)
					#chars_label.append(1)
					chars_label.append(index)
			chars_train = list(map(deskew, chars_train))
			chars_train = preprocess_hog(chars_train)
			#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
			chars_label = np.array(chars_label)
			print(chars_train.shape)
			self.modelchinese.train(chars_train, chars_label)

	def save_traindata(self):
		if not os.path.exists("svm.dat"):
			self.model.save("svm.dat")
		if not os.path.exists("svmchinese.dat"):
			self.modelchinese.save("svmchinese.dat")

	def accurate_place(self, card_img_hsv, limit1, limit2, color):
		row_num, col_num = card_img_hsv.shape[:2]
		xl = col_num
		xr = 0
		yh = 0
		yl = row_num
		#col_num_limit = self.cfg["col_num_limit"]
		row_num_limit = self.cfg["row_num_limit"]
		col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5#绿色有渐变
		for i in range(row_num):
			count = 0
			for j in range(col_num):
				H = card_img_hsv.item(i, j, 0)
				S = card_img_hsv.item(i, j, 1)
				V = card_img_hsv.item(i, j, 2)
				if limit1 < H <= limit2 and 34 < S and 46 < V:
					count += 1
			if count > col_num_limit:
				if yl > i:
					yl = i
				if yh < i:
					yh = i
		for j in range(col_num):
			count = 0
			for i in range(row_num):
				H = card_img_hsv.item(i, j, 0)
				S = card_img_hsv.item(i, j, 1)
				V = card_img_hsv.item(i, j, 2)
				if limit1 < H <= limit2 and 34 < S and 46 < V:
					count += 1
			if count > row_num - row_num_limit:
				if xl > j:
					xl = j
				if xr < j:
					xr = j
		return xl, xr, yh, yl
		
	def predict(self, car_pic, resize_rate=1):
		if type(car_pic) == type(""):
			img = imreadex(car_pic)
		else:
			img = car_pic
		pic_hight, pic_width = img.shape[:2]
		if pic_width > MAX_WIDTH:
			pic_rate = MAX_WIDTH / pic_width
			img = cv2.resize(img, (MAX_WIDTH, int(pic_hight*pic_rate)), interpolation=cv2.INTER_LANCZOS4)
		
		if resize_rate != 1:
			img = cv2.resize(img, (int(pic_width*resize_rate), int(pic_hight*resize_rate)), interpolation=cv2.INTER_LANCZOS4)
			pic_hight, pic_width = img.shape[:2]
			
		print("h,w:", pic_hight, pic_width)
		blur = self.cfg["blur"]
		#高斯去噪
		if blur > 0:
			img = cv2.GaussianBlur(img, (blur, blur), 0)#图片分辨率调整
		oldimg = img
		img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
		#equ = cv2.equalizeHist(img)
		#img = np.hstack((img, equ))
		#去掉图像中不会是车牌的区域
		kernel = np.ones((20, 20), np.uint8)
		img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
		img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);

		#找到图像边缘
		ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
		img_edge = cv2.Canny(img_thresh, 100, 200)
		#使用开运算和闭运算让图像边缘成为一个整体
		kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
		img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)
		img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)

		#查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
		try:
			contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
		except ValueError:
			image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
		contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]
		print('len(contours)', len(contours))
		#一一排除不是车牌的矩形区域
		car_contours = []
		for cnt in contours:
			rect = cv2.minAreaRect(cnt)
			area_width, area_height = rect[1]
			if area_width < area_height:
				area_width, area_height = area_height, area_width
			wh_ratio = area_width / area_height
			#print(wh_ratio)
			#要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
			if wh_ratio > 2 and wh_ratio < 5.5:
				car_contours.append(rect)
				box = cv2.boxPoints(rect)
				box = np.int0(box)
				#oldimg = cv2.drawContours(oldimg, [box], 0, (0, 0, 255), 2)
				#cv2.imshow("edge4", oldimg)
				#cv2.waitKey(0)

		print(len(car_contours))

		print("精确定位")
		card_imgs = []
		#矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
		for rect in car_contours:
			if rect[2] > -1 and rect[2] < 1:#创造角度,使得左、高、右、低拿到正确的值
				angle = 1
			else:
				angle = rect[2]
			rect = (rect[0], (rect[1][0]+5, rect[1][1]+5), angle)#扩大范围,避免车牌边缘被排除

			box = cv2.boxPoints(rect)
			heigth_point = right_point = [0, 0]
			left_point = low_point = [pic_width, pic_hight]
			for point in box:
				if left_point[0] > point[0]:
					left_point = point
				if low_point[1] > point[1]:
					low_point = point
				if heigth_point[1] < point[1]:
					heigth_point = point
				if right_point[0] < point[0]:
					right_point = point

			if left_point[1] <= right_point[1]:#正角度
				new_right_point = [right_point[0], heigth_point[1]]
				pts2 = np.float32([left_point, heigth_point, new_right_point])#字符只是高度需要改变
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(new_right_point)
				point_limit(heigth_point)
				point_limit(left_point)
				card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
				card_imgs.append(card_img)
				#cv2.imshow("card", card_img)
				#cv2.waitKey(0)
			elif left_point[1] > right_point[1]:#负角度
				
				new_left_point = [left_point[0], heigth_point[1]]
				pts2 = np.float32([new_left_point, heigth_point, right_point])#字符只是高度需要改变
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(right_point)
				point_limit(heigth_point)
				point_limit(new_left_point)
				card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
				card_imgs.append(card_img)
				#cv2.imshow("card", card_img)
				#cv2.waitKey(0)

创作不易,走过路过不要错过,点个赞再走吧,需要源码的朋友可以点赞关注我,再私信我获取源码!!!!