总结自论文:Faster_RCNN,与Pytorch代码

本文主要介绍代码最后部分:trainer.py  、train.py , 首先分析一些主要理论操作,然后在代码分析里详细介绍其具体实现。首先是训练与测试的过程图:

CRNN结构图 crnn模型训练_初始化

         

CRNN结构图 crnn模型训练_ide_02

 

还是要再次强调:

AnchorTargetCreatorProposalTargetCreator是为了生成训练的目标(或称ground truth)只在训练阶段用到,ProposalCreator是RPN为Fast R-CNN生成RoIs,在训练和测试阶段都会用到。所以测试阶段直接输进来300个RoIs,而训练阶段会有AnchorTargetCreator的再次干预。

在ROI Pooling过程中,首先sample_rois中的坐标将feature(512,w/16,h/16)划分为不同的roi_feature_map(_,512,w/16,w/16),再经过ROI Pooling操作,类似SPP那样将特征图下采样到同样的大小(_,512,7,7)。

 

 

一. 代码分析

1.trainer.py

CRNN结构图 crnn模型训练_初始化_03

CRNN结构图 crnn模型训练_初始化_04

from collections import namedtuple
import time
from torch.nn import functional as F
from model.utils.creator_tool import AnchorTargetCreator, ProposalTargetCreator

from torch import nn
import torch as t
from torch.autograd import Variable
from utils import array_tool as at
from utils.vis_tool import Visualizer

from utils.config import opt
from torchnet.meter import ConfusionMeter, AverageValueMeter

LossTuple = namedtuple('LossTuple',
                       ['rpn_loc_loss',
                        'rpn_cls_loss',
                        'roi_loc_loss',
                        'roi_cls_loss',
                        'total_loss'
                        ])


class FasterRCNNTrainer(nn.Module):
    """wrapper for conveniently training. return losses

    The losses include:

    * :obj:`rpn_loc_loss`: The localization loss for \
        Region Proposal Network (RPN).
    * :obj:`rpn_cls_loss`: The classification loss for RPN.
    * :obj:`roi_loc_loss`: The localization loss for the head module.
    * :obj:`roi_cls_loss`: The classification loss for the head module.
    * :obj:`total_loss`: The sum of 4 loss above.

    Args:
        faster_rcnn (model.FasterRCNN):
            A Faster R-CNN model that is going to be trained.
    """

    def __init__(self, faster_rcnn):
        super(FasterRCNNTrainer, self).__init__()

        self.faster_rcnn = faster_rcnn
        self.rpn_sigma = opt.rpn_sigma
        self.roi_sigma = opt.roi_sigma

        # target creator create gt_bbox gt_label etc as training targets. 
        self.anchor_target_creator = AnchorTargetCreator()
        self.proposal_target_creator = ProposalTargetCreator()

        self.loc_normalize_mean = faster_rcnn.loc_normalize_mean
        self.loc_normalize_std = faster_rcnn.loc_normalize_std

        self.optimizer = self.faster_rcnn.get_optimizer()
        # visdom wrapper
        self.vis = Visualizer(env=opt.env)

        # indicators for training status
        self.rpn_cm = ConfusionMeter(2)
        self.roi_cm = ConfusionMeter(21)
        self.meters = {k: AverageValueMeter() for k in LossTuple._fields}  # average loss

    def forward(self, imgs, bboxes, labels, scale):
        """Forward Faster R-CNN and calculate losses.

        Here are notations used.

        * :math:`N` is the batch size.
        * :math:`R` is the number of bounding boxes per image.

        Currently, only :math:`N=1` is supported.

        Args:
            imgs (~torch.autograd.Variable): A variable with a batch of images.
            bboxes (~torch.autograd.Variable): A batch of bounding boxes.
                Its shape is :math:`(N, R, 4)`.
            labels (~torch.autograd..Variable): A batch of labels.
                Its shape is :math:`(N, R)`. The background is excluded from
                the definition, which means that the range of the value
                is :math:`[0, L - 1]`. :math:`L` is the number of foreground
                classes.
            scale (float): Amount of scaling applied to
                the raw image during preprocessing.

        Returns:
            namedtuple of 5 losses
        """
        n = bboxes.shape[0]
        if n != 1:
            raise ValueError('Currently only batch size 1 is supported.')

        _, _, H, W = imgs.shape
        img_size = (H, W)

        features = self.faster_rcnn.extractor(imgs)

        rpn_locs, rpn_scores, rois, roi_indices, anchor = \
            self.faster_rcnn.rpn(features, img_size, scale)

        # Since batch size is one, convert variables to singular form
        bbox = bboxes[0]
        label = labels[0]
        rpn_score = rpn_scores[0]
        rpn_loc = rpn_locs[0]
        roi = rois

        # Sample RoIs and forward
        # it's fine to break the computation graph of rois, 
        # consider them as constant input
        sample_roi, gt_roi_loc, gt_roi_label = self.proposal_target_creator(
            roi,
            at.tonumpy(bbox),
            at.tonumpy(label),
            self.loc_normalize_mean,
            self.loc_normalize_std)
        # NOTE it's all zero because now it only support for batch=1 now
        sample_roi_index = t.zeros(len(sample_roi))
        roi_cls_loc, roi_score = self.faster_rcnn.head(
            features,
            sample_roi,
            sample_roi_index)

        # ------------------ RPN losses -------------------#
        gt_rpn_loc, gt_rpn_label = self.anchor_target_creator(
            at.tonumpy(bbox),
            anchor,
            img_size)
        gt_rpn_label = at.tovariable(gt_rpn_label).long()
        gt_rpn_loc = at.tovariable(gt_rpn_loc)
        rpn_loc_loss = _fast_rcnn_loc_loss(
            rpn_loc,
            gt_rpn_loc,
            gt_rpn_label.data,
            self.rpn_sigma)

        # NOTE: default value of ignore_index is -100 ...
        rpn_cls_loss = F.cross_entropy(rpn_score, gt_rpn_label.cuda(), ignore_index=-1)
        _gt_rpn_label = gt_rpn_label[gt_rpn_label > -1]
        _rpn_score = at.tonumpy(rpn_score)[at.tonumpy(gt_rpn_label) > -1]
        self.rpn_cm.add(at.totensor(_rpn_score, False), _gt_rpn_label.data.long())

        # ------------------ ROI losses (fast rcnn loss) -------------------#
        n_sample = roi_cls_loc.shape[0]
        roi_cls_loc = roi_cls_loc.view(n_sample, -1, 4)
        roi_loc = roi_cls_loc[t.arange(0, n_sample).long().cuda(), \
                              at.totensor(gt_roi_label).long()]
        gt_roi_label = at.tovariable(gt_roi_label).long()
        gt_roi_loc = at.tovariable(gt_roi_loc)

        roi_loc_loss = _fast_rcnn_loc_loss(
            roi_loc.contiguous(),
            gt_roi_loc,
            gt_roi_label.data,
            self.roi_sigma)

        roi_cls_loss = nn.CrossEntropyLoss()(roi_score, gt_roi_label.cuda())

        self.roi_cm.add(at.totensor(roi_score, False), gt_roi_label.data.long())

        losses = [rpn_loc_loss, rpn_cls_loss, roi_loc_loss, roi_cls_loss]
        losses = losses + [sum(losses)]

        return LossTuple(*losses)

    def train_step(self, imgs, bboxes, labels, scale):
        self.optimizer.zero_grad()
        losses = self.forward(imgs, bboxes, labels, scale)
        losses.total_loss.backward()
        self.optimizer.step()
        self.update_meters(losses)
        return losses

    def save(self, save_optimizer=False, save_path=None, **kwargs):
        """serialize models include optimizer and other info
        return path where the model-file is stored.

        Args:
            save_optimizer (bool): whether save optimizer.state_dict().
            save_path (string): where to save model, if it's None, save_path
                is generate using time str and info from kwargs.
        
        Returns:
            save_path(str): the path to save models.
        """
        save_dict = dict()

        save_dict['model'] = self.faster_rcnn.state_dict()
        save_dict['config'] = opt._state_dict()
        save_dict['other_info'] = kwargs
        save_dict['vis_info'] = self.vis.state_dict()

        if save_optimizer:
            save_dict['optimizer'] = self.optimizer.state_dict()

        if save_path is None:
            timestr = time.strftime('%m%d%H%M')
            save_path = 'checkpoints/fasterrcnn_%s' % timestr
            for k_, v_ in kwargs.items():
                save_path += '_%s' % v_

        t.save(save_dict, save_path)
        self.vis.save([self.vis.env])
        return save_path

    def load(self, path, load_optimizer=True, parse_opt=False, ):
        state_dict = t.load(path)
        if 'model' in state_dict:
            self.faster_rcnn.load_state_dict(state_dict['model'])
        else:  # legacy way, for backward compatibility
            self.faster_rcnn.load_state_dict(state_dict)
            return self
        if parse_opt:
            opt._parse(state_dict['config'])
        if 'optimizer' in state_dict and load_optimizer:
            self.optimizer.load_state_dict(state_dict['optimizer'])
        return self

    def update_meters(self, losses):
        loss_d = {k: at.scalar(v) for k, v in losses._asdict().items()}
        for key, meter in self.meters.items():
            meter.add(loss_d[key])

    def reset_meters(self):
        for key, meter in self.meters.items():
            meter.reset()
        self.roi_cm.reset()
        self.rpn_cm.reset()

    def get_meter_data(self):
        return {k: v.value()[0] for k, v in self.meters.items()}


def _smooth_l1_loss(x, t, in_weight, sigma):
    sigma2 = sigma ** 2
    diff = in_weight * (x - t)
    abs_diff = diff.abs()
    flag = (abs_diff.data < (1. / sigma2)).float()
    flag = Variable(flag)
    y = (flag * (sigma2 / 2.) * (diff ** 2) +
         (1 - flag) * (abs_diff - 0.5 / sigma2))
    return y.sum()


def _fast_rcnn_loc_loss(pred_loc, gt_loc, gt_label, sigma):
    in_weight = t.zeros(gt_loc.shape).cuda()
    # Localization loss is calculated only for positive rois.
    # NOTE:  unlike origin implementation, 
    # we don't need inside_weight and outside_weight, they can calculate by gt_label
    in_weight[(gt_label > 0).view(-1, 1).expand_as(in_weight).cuda()] = 1
    loc_loss = _smooth_l1_loss(pred_loc, gt_loc, Variable(in_weight), sigma)
    # Normalize by total number of negtive and positive rois.
    loc_loss /= (gt_label >= 0).sum()  # ignore gt_label==-1 for rpn_loss
    return loc_loss

View Code

此脚本定义了类FasterRCNNTrainer,在初始化中用到了之前定义的类FasterRCNNVGG16为faster_rcnn。  此外在初始化中有引入了其他creator、vis、optimizer等。

定义了四个损失函数和一个总损失函数:rpn_loc_loss、rpn_cls_loss、roi_loc_loss、roi_cls_loss以及total_loss。

前向传播

因为只支持batch_size=1的训练,所以n=1。 每个batch输入一张图片、一张图片上的所有bbox及label,以及图像经过预处理后的尺度scale。

对于两个分类损失调用cross_entropy即可。回归损失调用smooth_l1_loss。这里要注意的一点是例如roi回归输出的是128*84,然而真实位置参数是128*4和真实标签128*1,利用这个真实标签将回归输出索引成为128*4即可。然后在计算过程中只计算非背景类的回归损失。具体实现与Fast-RCNN略有不同(sigma设置不同)。

此外定义了保存模型、可视化信息、具体配置、导入权重、配置信息等函数。

此外还从torchnet.meter 引入了 ConfusionMeter, AverageValueMeter。

 

2. trainer.py

CRNN结构图 crnn模型训练_初始化_03

CRNN结构图 crnn模型训练_初始化_04

import os

import ipdb
import matplotlib
from tqdm import tqdm

from utils.config import opt
from data.dataset import Dataset, TestDataset, inverse_normalize
from model import FasterRCNNVGG16
from torch.autograd import Variable
from torch.utils import data as data_
from trainer import FasterRCNNTrainer
from utils import array_tool as at
from utils.vis_tool import visdom_bbox
from utils.eval_tool import eval_detection_voc

# fix for ulimit
# https://github.com/pytorch/pytorch/issues/973#issuecomment-346405667
import resource

rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (20480, rlimit[1]))

matplotlib.use('agg')


def eval(dataloader, faster_rcnn, test_num=10000):
    pred_bboxes, pred_labels, pred_scores = list(), list(), list()
    gt_bboxes, gt_labels, gt_difficults = list(), list(), list()
    for ii, (imgs, sizes, gt_bboxes_, gt_labels_, gt_difficults_) in tqdm(enumerate(dataloader)):
        sizes = [sizes[0][0], sizes[1][0]]
        pred_bboxes_, pred_labels_, pred_scores_ = faster_rcnn.predict(imgs, [sizes])
        gt_bboxes += list(gt_bboxes_.numpy())
        gt_labels += list(gt_labels_.numpy())
        gt_difficults += list(gt_difficults_.numpy())
        pred_bboxes += pred_bboxes_
        pred_labels += pred_labels_
        pred_scores += pred_scores_
        if ii == test_num: break

    result = eval_detection_voc(
        pred_bboxes, pred_labels, pred_scores,
        gt_bboxes, gt_labels, gt_difficults,
        use_07_metric=True)
    return result


def train(**kwargs):
    opt._parse(kwargs)

    dataset = Dataset(opt)
    print('load data')
    dataloader = data_.DataLoader(dataset, \
                                  batch_size=1, \
                                  shuffle=True, \
                                  # pin_memory=True,
                                  num_workers=opt.num_workers)
    testset = TestDataset(opt)
    test_dataloader = data_.DataLoader(testset,
                                       batch_size=1,
                                       num_workers=opt.test_num_workers,
                                       shuffle=False, \
                                       pin_memory=True
                                       )
    faster_rcnn = FasterRCNNVGG16()
    print('model construct completed')
    trainer = FasterRCNNTrainer(faster_rcnn).cuda()
    if opt.load_path:
        trainer.load(opt.load_path)
        print('load pretrained model from %s' % opt.load_path)

    trainer.vis.text(dataset.db.label_names, win='labels')
    best_map = 0
    lr_ = opt.lr
    for epoch in range(opt.epoch):
        trainer.reset_meters()
        for ii, (img, bbox_, label_, scale) in tqdm(enumerate(dataloader)):
            scale = at.scalar(scale)
            img, bbox, label = img.cuda().float(), bbox_.cuda(), label_.cuda()
            img, bbox, label = Variable(img), Variable(bbox), Variable(label)
            trainer.train_step(img, bbox, label, scale)

            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                # plot loss
                trainer.vis.plot_many(trainer.get_meter_data())

                # plot groud truth bboxes
                ori_img_ = inverse_normalize(at.tonumpy(img[0]))
                gt_img = visdom_bbox(ori_img_,
                                     at.tonumpy(bbox_[0]),
                                     at.tonumpy(label_[0]))
                trainer.vis.img('gt_img', gt_img)

                # plot predicti bboxes
                _bboxes, _labels, _scores = trainer.faster_rcnn.predict([ori_img_], visualize=True)
                pred_img = visdom_bbox(ori_img_,
                                       at.tonumpy(_bboxes[0]),
                                       at.tonumpy(_labels[0]).reshape(-1),
                                       at.tonumpy(_scores[0]))
                trainer.vis.img('pred_img', pred_img)

                # rpn confusion matrix(meter)
                trainer.vis.text(str(trainer.rpn_cm.value().tolist()), win='rpn_cm')
                # roi confusion matrix
                trainer.vis.img('roi_cm', at.totensor(trainer.roi_cm.conf, False).float())
        eval_result = eval(test_dataloader, faster_rcnn, test_num=opt.test_num)

        if eval_result['map'] > best_map:
            best_map = eval_result['map']
            best_path = trainer.save(best_map=best_map)
        if epoch == 9:
            trainer.load(best_path)
            trainer.faster_rcnn.scale_lr(opt.lr_decay)
            lr_ = lr_ * opt.lr_decay

        trainer.vis.plot('test_map', eval_result['map'])
        log_info = 'lr:{}, map:{},loss:{}'.format(str(lr_),
                                                  str(eval_result['map']),
                                                  str(trainer.get_meter_data()))
        trainer.vis.log(log_info)
        if epoch == 13: 
            break


if __name__ == '__main__':
    import fire

    fire.Fire()

View Code

训练Faster-RCNN。

总共迭代14个epoch,第9个epoch时学习率衰减0.1倍。每100个batch在visdom中更新损失变化曲线及显示训练与测试图像。

 

二. 补充内容

1. RPN网络

RPN作用是通过网络训练的方式从feature map中获取目标的大致位置RPN做两件事:1、把feature map分割成多个小区域,识别出哪些小区域是前景,哪些是背景,简称RPN Classification;2、获取前景区域的大致坐标,简称RPN bounding box regression。RPN可以独立使用,而不需要第二阶段的模型。在只有一类对象的问题中,目标性概率可以用作最终的类别概率。这是因为在这种情况下,「前景」=「目标类别」以及「背景」=「不是目标类别」。一些从独立使用 RPN 中受益的机器学习问题的例子包括流行的(但仍然是具有挑战性的)人脸检测和文本检测。仅使用 RPN 的优点之一是训练和预测的速度都有所提高。由于 RPN 是一个非常简单的仅使用卷积层的网络,所以预测时间比使用分类基础网络更快。

 

2. 回归

两次位置参数回归中的h,w都采用的是取对数操作,用对数来表示长宽的差别,是为了在差别大时能快速收敛,差别小时能较慢收敛来保证精度

 

3 . chainer框架与pytorch等其他框架的比较

chainer利用python重造了所有轮子(所有layer、正反向传播等),而pytorch借用现有C语言的轮子(TH、THNN)。

下图是chainer实现Faster-RCNN的流程图:

CRNN结构图 crnn模型训练_ide_07

 

 

Reference:

从编程实现角度学习Faster R-CNN(附极简实现)

深度 | 像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程

从结构、原理到实现,Faster R-CNN全解析

一文读懂Faster R-CNN

 chainer简介 、 chainer官网(包含 chainer MNchainer RLchainer CV

目标检测模型的评估指标mAP详解(附代码)