目录

  • 1. torch.utils.data.Dataset
  • 2. torch.utils.data.DataLoader
  • 3. transforms
  • 3.1 pytorch官方API
  • 3.1.1 transforms.Compose
  • 3.1.2 transforms.ToTensor
  • 3.2 自定义transforms


在pytorch中,提供了一种十分方便的数据读取机制,即,使用torch.utils.data.Datasettorch.utils.data.DataLoader组合得到数据迭代器。在每次训练时,利用这个迭代器输出每一个batch数据,并能在输出时对数据进行相应的预处理或数据增强等操作。

1. torch.utils.data.Dataset

torch.utils.data.Dataset是代表自定义数据集方法的类,用户可以通过继承该类来自定义自己的数据集类,在继承时要求用户重载__len__()__getitem__()这两个魔法方法。

  • __len__()返回的是数据集的大小。我们构建的数据集是一个对象,而数据集不像序列类型(列表、元组、字符串)那样可以直接用len()来获取序列的长度,魔法方法__len__()的目的就是方便像序列那样直接获取对象的长度。如果A是一个类,a是类A的实例化对象,当A中定义了魔法方法__len__()len(a)则返回对象的大小。
  • __getitem__()实现索引数据集中的某一个数据。我们知道,序列可以通过索引的方法获取序列中的任意元素,__getitem__()则实现了能够通过索引的方法获取对象中的任意元素。此外,我们可以在__getitem__()实现数据预处理

示例1

import torch
from torch.utils.data import Dataset


class TensorDataset(Dataset):
    """
    TensorDataset继承Dataset, 重载了__init__(), __getitem__(), __len__()
    实现将一组Tensor数据对封装成Tensor数据集
    能够通过index得到数据集的数据,能够通过len,得到数据集大小
    """
    def __init__(self, data_tensor, target_tensor):
        self.data_tensor = data_tensor
        self.target_tensor = target_tensor

    def __getitem__(self, index):
        return self.data_tensor[index], self.target_tensor[index]

    def __len__(self):
        return self.data_tensor.size(0)

# 生成数据
data_tensor = torch.randn(4, 3)
target_tensor = torch.rand(4)

# 将数据封装成Dataset
tensor_dataset = TensorDataset(data_tensor, target_tensor)

# 可使用索引调用数据
print(tensor_dataset[1])
# 输出:(tensor([-1.0351, -0.1004,  0.9168]), tensor(0.4977))

# 获取数据集大小
print(len(tensor_dataset))
# 输出:4

示例2

import os
from PIL import Image
from torch.utils.data import Dataset


class PatchDataset(Dataset):
    def __init__(self, data_dir, transforms=None):
        """
        :param data_dir: 数据集所在路径
        :param transform: 数据预处理
        """

        self.data_info = self.get_img_info(data_dir)
        self.transforms = transforms

    def __getitem__(self, item):
        path_img, label = self.data_info[item]
        image = Image.open(path_img).convert('RGB')
        if self.transforms is not None:
            image = self.transforms(image)

        return image, label

    def __len__(self):
        return len(self.data_info)

    @staticmethod
    def get_img_info(data_dir):
        path_dir = os.path.join(data_dir, 'train_dataset.txt')
        data_info = []
        with open(path_dir) as file:
            lines = file.readlines()
            for line in lines:
                data_info.append(line.strip('\n').split(' '))
        return data_info

其中, train_dataset.txt中的内容为:

pytorch的dataloader数据格式 pytorch .data_Image

2. torch.utils.data.DataLoader

作用:

  • DataLoaderDataset对象或自定义数据类的对象封装成一个迭代器;
  • 这个迭代器可以迭代输出Dataset的内容;
  • 同时可以实现多进程、shuffle、不同采样策略,数据校对等等处理过程。

__init__()中的几个重要的输入:

  • dataset:这个就是pytorch已有的数据读取接口(比如torchvision.datasets.ImageFolder)或者自定义的数据接口的输出,该输出要么是torch.utils.data.Dataset类的对象,要么是继承自torch.utils.data.Dataset类的自定义类的对象。
  • batch_size:根据具体情况设置即可。
  • shuffle:随机打乱顺序,一般在训练数据中会采用。
  • collate_fn:是用来处理不同情况下的输入dataset的封装,一般采用默认即可,除非你自定义的数据读取输出非常少见。
  • batch_sampler:从注释可以看出,其和batch_size、shuffle等参数是互斥的,一般采用默认。
  • sampler:从代码可以看出,其和shuffle是互斥的,一般默认即可。
  • num_workers:从注释可以看出这个参数必须大于等于0,0的话表示数据导入在主进程中进行,其他大于0的数表示通过多个进程来导入数据,可以加快数据导入速度。
  • pin_memory:注释写得很清楚了: pin_memory (bool, optional): If True, the data loader will copy tensors into CUDA pinned memory before returning them. 也就是一个数据拷贝的问题。
  • timeout:是用来设置数据读取的超时时间的,但超过这个时间还没读取到数据的话就会报错。

代码示例(接示例1)

tensor_dataloader = DataLoader(tensor_dataset,   # 封装的对象
                               batch_size=2,     # 输出的batch size
                               shuffle=True,     # 随机输出
                               num_workers=0)    # 只有1个进程

# 以for循环形式输出
for data, target in tensor_dataloader:
    print(data, target)

输出结果:

tensor([[ 0.7745,  0.2186,  0.1231],
        [-0.1307,  1.5778, -1.2906]]) tensor([0.3749, 0.4659])
tensor([[-0.1605,  0.9359,  0.1314],
        [-1.1694,  1.0986, -0.9927]]) tensor([0.8071, 0.8997])

3. transforms

3.1 pytorch官方API

transforms主要实现对数据集的预处理、数据增强、转换成tensor等一系列操作,使用以下代码可导入transforms文件。

from torchvision import transforms

transforms主要用在Dataset类构建过程中,整个流程如下所示:

from PIL import Image
from torchvision import transforms
from torch.utils.data import Dataset


class MyDataset(Dataset):
    def __init__(self, data_dir, transforms=None):
        self.data_info = self.get_img_info(data_dir)
        self.transforms = transforms

    def __getitem__(self, item):
        path_img, label = self.data_info[item]
        image = Image.open(path_img).convert('RGB')
        # 使用定义好的transforms,对数据进行处理
        if self.transforms is not None:
            image = self.transforms(image)

        return image, label

    def __len__(self):
        return len(self.data_info)

train_transforms = transforms.Compose([transforms.ToTensor(),
                                       transforms.RandomHorizontalFlip(0.5)])
train_dataset = MyDataset(data_dir, train_transforms)
from torchvision import transforms

transforms_train = transforms.Compose([transforms.Resize(40),
                                       transforms.RandomResizedCrop(32, scale=(0.64, 1.0), ratio=(1.0, 1.0)),
                                       transforms.RandomHorizontalFlip(),
                                       transforms.ToTensor(),
                                       transforms.Normalize(mean=[0.4914, 0.4832, 0.4856],
                                                            std=[0.2023, 0.2013, 0.2111])])

transforms_test = transforms.Compose([transforms.ToTensor(),
                                      transforms.Normalize(mean=[0.4914, 0.4832, 0.4856],
                                                           std=[0.2023, 0.2013, 0.2111])])

接下来介绍transforms的原理及用法。

3.1.1 transforms.Compose

Compose类的作用是组合多个transforms函数,Compose类的初始化函数中需要传入一个含有多种transform方法的列表,随后将图像逐一通过这些transform方法。

class Compose:
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

类中定义了__call__()方法,作用是可以将类实例化后得到的对象当做函数来使用,比如:

class SquareNum():
    def __call__(self, x):
        return x ** 2
        
square_num = SquareNum()
print(square_num(2))

由于类SquareNum实现了魔法方法__call__(),那么square_num(2)就是把对象名当做函数名来使用。

3.1.2 transforms.ToTensor

这个类的作用是将PIL Imagenumpy.ndarray转换成tensor,在转换前会将调整维度,并进行单位化:
Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]

class ToTensor:
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

3.2 自定义transforms

对于目标检测,在对原始图像进行数据增强时,需要同时对目标的边界框坐标做相应的调整;或者我们需要构建自己的数据增强方法,这个时候我们就需要自己定义transforms。

import random
from torchvision.transforms import functional as F


class Compose(object):
    """组合多个transform函数"""
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class ToTensor(object):
    """将PIL图像转为Tensor"""
    def __call__(self, image, target):
        image = F.to_tensor(image)
        # target不需要对维度进行调整或单位化
        target = torch.as_tensor(np.array(target), dtype=torch.int64)
        return image, target


class RandomHorizontalFlip(object):
    """随机水平翻转图像以及bboxes"""
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, image, target):
        if random.random() < self.prob:
            height, width = image.shape[-2:]
            image = image.flip(-1)  # 水平翻转图片
            bbox = target["boxes"]
            # bbox: xmin, ymin, xmax, ymax
            bbox[:, [0, 2]] = width - bbox[:, [2, 0]]  # 翻转对应bbox坐标信息
            target["boxes"] = bbox
        return image, target

对于图像分割,我们在做数据增强时同样需要自己定义transforms。

import numpy as np
from PIL import Image
import random

import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F


def pad_if_smaller(img, size, fill=0):
    min_size = min(img.size)
    if min_size < size:
        ow, oh = img.size
        padh = size - oh if oh < size else 0
        padw = size - ow if ow < size else 0
        img = F.pad(img, (0, 0, padw, padh), fill=fill)
    return img


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class RandomResize(object):
    def __init__(self, min_size, max_size=None):
        self.min_size = min_size
        if max_size is None:
            max_size = min_size
        self.max_size = max_size

    def __call__(self, image, target):
        size = random.randint(self.min_size, self.max_size)
        image = F.resize(image, size)
        target = F.resize(target, size, interpolation=Image.NEAREST)
        return image, target


class RandomHorizontalFlip(object):
    def __init__(self, flip_prob):
        self.flip_prob = flip_prob

    def __call__(self, image, target):
        if random.random() < self.flip_prob:
            image = F.hflip(image)
            target = F.hflip(target)
        return image, target


class RandomCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = pad_if_smaller(image, self.size)
        target = pad_if_smaller(target, self.size, fill=255)
        crop_params = T.RandomCrop.get_params(image, (self.size, self.size))
        image = F.crop(image, *crop_params)
        target = F.crop(target, *crop_params)
        return image, target


class CenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = F.center_crop(image, self.size)
        target = F.center_crop(target, self.size)
        return image, target


class ToTensor(object):
    def __call__(self, image, target):
        image = F.to_tensor(image)
        target = torch.as_tensor(np.array(target), dtype=torch.int64)
        return image, target


class Normalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image, target):
        image = F.normalize(image, mean=self.mean, std=self.std)
        return image, target

参考资料:
[1]: Pytorch笔记05-自定义数据读取方式orch.utils.data.Dataset与Dataloader.
[2]: pytorch源码分析之torch.utils.data.Dataset类和torch.utils.data.DataLoader类.