这两天与联通对接流量卡实名相关接口。他们用到了国密SM3,一个比较冷门的加密(或者说是签名)方式。顺带我也了解了下SM2、SM3、SM4:本文只做了SM2、SM3、SM4 代码补充
国产密码算法(国密算法)是指国家密码局认定的国产商用密码算法,在金融领域目前主要使用公开的SM2、SM3、SM4三类算法,分别是非对称算法、哈希算法和对称算法。
SM1对称密码
SM1 算法是分组密码算法,分组长度为128位,密钥长度都为 128 比特,算法安全保密强度及相关软硬件实现性能与 AES 相当,算法不公开,仅以IP核的形式存在于芯片中。
采用该算法已经研制了系列芯片、智能IC卡、智能密码钥匙、加密卡、加密机等安全产品,广泛应用于电子政务、电子商务及国民经济的各个应用领域(包括国家政务通、警务通等重要领域)。
SM2椭圆曲线公钥密码算法
SM2算法就是ECC椭圆曲线密码机制,但在签名、密钥交换方面不同于ECDSA、ECDH等国际标准,而是采取了更为安全的机制。另外,SM2推荐了一条256位的曲线作为标准曲线。
SM2标准包括总则,数字签名算法,密钥交换协议,公钥加密算法四个部分,并在每个部分的附录详细说明了实现的相关细节及示例。
SM2算法主要考虑素域Fp和F2m上的椭圆曲线,分别介绍了这两类域的表示,运算,以及域上的椭圆曲线的点的表示,运算和多倍点计算算法。然后介绍了编程语言中的数据转换,包括整数和字节串,字节串和比特串,域元素和比特串,域元素和整数,点和字节串之间的数据转换规则。详细说明了有限域上椭圆曲线的参数生成以及验证,椭圆曲线的参数包括有限域的选取、椭圆曲线方程参数、椭圆曲线群基点的选取等,并给出了选取的标准以便于验证。最后给椭圆曲线上密钥对的生成以及公钥的验证,用户的密钥对为(s,sP),其中s为用户的私钥,sP为用户的公钥,由于离散对数问题从sP难以得到s,并针对素域和二元扩域给出了密钥对生成细节和验证方式。总则中的知识也适用于SM9算法。
在总则的基础上给出了数字签名算法(包括数字签名生成算法和验证算法),密钥交换协议以及公钥加密算法(包括加密算法和解密算法),并在每个部分给出了算法描述,算法流程和相关示例。
数字签名算法、密钥交换协议以及公钥加密算法都使用了国家密管理局批准的SM3密码杂凑算法和随机数发生器。数字签名算法、密钥交换协议以及公钥加密算法根据总则来选取有限域和椭圆曲线,并生成密钥对。
SM2算法在很多方面都优于RSA算法。
SM3杂凑算法
SM3密码杂凑(哈希、散列)算法给出了杂凑函数算法的计算方法和计算步骤,并给出了运算示例。此算法适用于商用密码应用中的数字签名和验证,消息认证码的生成与验证以及随机数的生成,可满足多种密码应用的安全需求。在SM2,SM9标准中使用。
此算法对输入长度小于2的64次方的比特消息,经过填充和迭代压缩,生成长度为256比特的杂凑值,其中使用了异或,模,模加,移位,与,或,非运算,由填充,迭代过程,消息扩展和压缩函数所构成。具体算法及运算示例见SM3标准。
SM4对称算法
此算法是一个分组算法,用于无线局域网产品。该算法的分组长度为128比特,密钥长度为128比特。加密算法与密钥扩展算法都采用32轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。
此算法采用非线性迭代结构,每次迭代由一个轮函数给出,其中轮函数由一个非线性变换和线性变换复合而成,非线性变换由S盒所给出。其中rki为轮密钥,合成置换T组成轮函数。轮密钥的产生与上图流程类似,由加密密钥作为输入生成,轮函数中的线性变换不同,还有些参数的区别。SM4算法的具体描述和示例见SM4标准。
SM7对称密码
SM7算法,是一种分组密码算法,分组长度为128比特,密钥长度为128比特。SM7适用于非接触式IC卡,应用包括身份识别类应用(门禁卡、工作证、参赛证),票务类应用(大型赛事门票、展会门票),支付与通卡类应用(积分消费卡、校园一卡通、企业一卡通等)。
SM9标识密码算法
为了降低公开密钥系统中密钥和证书管理的复杂性,以色列科学家、RSA算法发明人之一Adi Shamir在1984年提出了标识密码(Identity-Based Cryptography)的理念。标识密码将用户的标识(如邮件地址、手机号码、QQ号码等)作为公钥,省略了交换数字证书和公钥过程,使得安全系统变得易于部署和管理,非常适合端对端离线安全通讯、云端数据加密、基于属性加密、基于策略加密的各种场合。2008年标识密码算法正式获得国家密码管理局颁发的商密算法型号:SM9(商密九号算法),为我国标识密码技术的应用奠定了坚实的基础。
SM9算法不需要申请数字证书,适用于互联网应用的各种新兴应用的安全保障。如基于云技术的密码服务、电子邮件安全、智能终端保护、物联网安全、云存储安全等等。这些安全应用可采用手机号码或邮件地址作为公钥,实现数据加密、身份认证、通话加密、通道加密等安全应用,并具有使用方便,易于部署的特点,从而开启了普及密码算法的大门。
ZUC祖冲之算法
祖冲之序列密码算法是中国自主研究的流密码算法,是运用于移动通信4G网络中的国际标准密码算法,该算法包括祖冲之算法(ZUC)、加密算法(128-EEA3)和完整性算法(128-EIA3)三个部分。目前已有对ZUC算法的优化实现,有专门针对128-EEA3和128-EIA3的硬件实现与优化。
入正题
首先需要引用 BouncyCastle.Crypto.dll(.netcore 或者 stander 需要引入BouncyCastle.Crypto 的 NuGet包)
一、SM2
SM2主类
using System;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
using System.Text;
namespace Com.Mlq.SM
{
public class SM2
{
public static SM2 Instance
{
get
{
return new SM2();
}
}
public static SM2 InstanceTest
{
get
{
return new SM2();
}
}
public static readonly string[] sm2_param = {
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF",// p,0
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC",// a,1
"28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93",// b,2
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123",// n,3
"32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7",// gx,4
"BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0" // gy,5
};
public string[] ecc_param = sm2_param;
public readonly BigInteger ecc_p;
public readonly BigInteger ecc_a;
public readonly BigInteger ecc_b;
public readonly BigInteger ecc_n;
public readonly BigInteger ecc_gx;
public readonly BigInteger ecc_gy;
public readonly ECCurve ecc_curve;
public readonly ECPoint ecc_point_g;
public readonly ECDomainParameters ecc_bc_spec;
public readonly ECKeyPairGenerator ecc_key_pair_generator;
private SM2()
{
ecc_param = sm2_param;
ECFieldElement ecc_gx_fieldelement;
ECFieldElement ecc_gy_fieldelement;
ecc_p = new BigInteger(ecc_param[0], 16);
ecc_a = new BigInteger(ecc_param[1], 16);
ecc_b = new BigInteger(ecc_param[2], 16);
ecc_n = new BigInteger(ecc_param[3], 16);
ecc_gx = new BigInteger(ecc_param[4], 16);
ecc_gy = new BigInteger(ecc_param[5], 16);
ecc_gx_fieldelement = new FpFieldElement(ecc_p, ecc_gx);
ecc_gy_fieldelement = new FpFieldElement(ecc_p, ecc_gy);
ecc_curve = new FpCurve(ecc_p, ecc_a, ecc_b);
ecc_point_g = new FpPoint(ecc_curve, ecc_gx_fieldelement, ecc_gy_fieldelement);
ecc_bc_spec = new ECDomainParameters(ecc_curve, ecc_point_g, ecc_n);
ECKeyGenerationParameters ecc_ecgenparam;
ecc_ecgenparam = new ECKeyGenerationParameters(ecc_bc_spec, new SecureRandom());
ecc_key_pair_generator = new ECKeyPairGenerator();
ecc_key_pair_generator.Init(ecc_ecgenparam);
}
public virtual byte[] Sm2GetZ(byte[] userId, ECPoint userKey)
{
SM3Digest sm3 = new SM3Digest();
byte[] p;
// userId length
int len = userId.Length * 8;
sm3.Update((byte) (len >> 8 & 0x00ff));
sm3.Update((byte) (len & 0x00ff));
// userId
sm3.BlockUpdate(userId, 0, userId.Length);
// a,b
p = ecc_a.ToByteArray();
sm3.BlockUpdate(p, 0, p.Length);
p = ecc_b.ToByteArray();
sm3.BlockUpdate(p, 0, p.Length);
// gx,gy
p = ecc_gx.ToByteArray();
sm3.BlockUpdate(p, 0, p.Length);
p = ecc_gy.ToByteArray();
sm3.BlockUpdate(p, 0, p.Length);
// x,y
p = userKey.X.ToBigInteger().ToByteArray();
sm3.BlockUpdate(p, 0, p.Length);
p = userKey.Y.ToBigInteger().ToByteArray();
sm3.BlockUpdate(p, 0, p.Length);
// Z
byte[] md = new byte[sm3.GetDigestSize()];
sm3.DoFinal(md, 0);
return md;
}
}
}
SM2工具类:
using Com.Mlq.SM;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Utilities.Encoders;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Com.Mlq.SM
{
class SM2Utils
{
public static void GenerateKeyPair()
{
SM2 sm2 = SM2.Instance;
AsymmetricCipherKeyPair key = sm2.ecc_key_pair_generator.GenerateKeyPair();
ECPrivateKeyParameters ecpriv = (ECPrivateKeyParameters) key.Private;
ECPublicKeyParameters ecpub = (ECPublicKeyParameters) key.Public;
BigInteger privateKey = ecpriv.D;
ECPoint publicKey = ecpub.Q;
System.Console.Out.WriteLine("公钥: " + Encoding.Default.GetString(Hex.Encode(publicKey.GetEncoded())).ToUpper());
System.Console.Out.WriteLine("私钥: " + Encoding.Default.GetString(Hex.Encode(privateKey.ToByteArray())).ToUpper());
}
public static String Encrypt(byte[] publicKey,byte[] data)
{
if (null == publicKey || publicKey.Length == 0)
{
return null;
}
if (data == null || data.Length == 0)
{
return null;
}
byte[] source = new byte[data.Length];
Array.Copy(data, 0, source, 0, data.Length);
Cipher cipher = new Cipher();
SM2 sm2 = SM2.Instance;
ECPoint userKey = sm2.ecc_curve.DecodePoint(publicKey);
ECPoint c1 = cipher.Init_enc(sm2, userKey);
cipher.Encrypt(source);
byte[] c3 = new byte[32];
cipher.Dofinal(c3);
String sc1 = Encoding.Default.GetString(Hex.Encode(c1.GetEncoded()));
String sc2 = Encoding.Default.GetString(Hex.Encode(source));
String sc3 = Encoding.Default.GetString(Hex.Encode(c3));
return (sc1 + sc2 + sc3).ToUpper();
}
public static byte[] Decrypt(byte[] privateKey, byte[] encryptedData)
{
if (null == privateKey || privateKey.Length == 0)
{
return null;
}
if (encryptedData == null || encryptedData.Length == 0)
{
return null;
}
String data = Encoding.Default.GetString(Hex.Encode(encryptedData));
byte[] c1Bytes = Hex.Decode(Encoding.Default.GetBytes(data.Substring(0 , 130)));
int c2Len = encryptedData.Length - 97;
byte[] c2 = Hex.Decode(Encoding.Default.GetBytes(data.Substring(130 , 2 * c2Len)));
byte[] c3 = Hex.Decode(Encoding.Default.GetBytes(data.Substring(130 + 2 * c2Len , 64)));
SM2 sm2 = SM2.Instance;
BigInteger userD = new BigInteger(1, privateKey);
ECPoint c1 = sm2.ecc_curve.DecodePoint(c1Bytes);
Cipher cipher = new Cipher();
cipher.Init_dec(userD, c1);
cipher.Decrypt(c2);
cipher.Dofinal(c3);
return c2;
}
//[STAThread]
//public static void Main()
//{
// GenerateKeyPair();
// String plainText = "ererfeiisgod";
// byte[] sourceData = Encoding.Default.GetBytes(plainText);
// //下面的秘钥可以使用generateKeyPair()生成的秘钥内容
// // 国密规范正式私钥
// String prik = "3690655E33D5EA3D9A4AE1A1ADD766FDEA045CDEAA43A9206FB8C430CEFE0D94";
// // 国密规范正式公钥
// String pubk = "04F6E0C3345AE42B51E06BF50B98834988D54EBC7460FE135A48171BC0629EAE205EEDE253A530608178A98F1E19BB737302813BA39ED3FA3C51639D7A20C7391A";
// System.Console.Out.WriteLine("加密: ");
// String cipherText = SM2Utils.Encrypt(Hex.Decode(pubk), sourceData);
// System.Console.Out.WriteLine(cipherText);
// System.Console.Out.WriteLine("解密: ");
// plainText = Encoding.Default.GetString(SM2Utils.Decrypt(Hex.Decode(prik), Hex.Decode(cipherText)));
// System.Console.Out.WriteLine(plainText);
// Console.ReadLine();
//}
}
}
二、SM3
using System;
using Org.BouncyCastle.Utilities.Encoders;
using System.Text;
using Org.BouncyCastle.Crypto;
namespace Com.Mlq.SM
{
public abstract class GeneralDigest : IDigest
{
private const int BYTE_LENGTH = 64;
private byte[] xBuf;
private int xBufOff;
private long byteCount;
internal GeneralDigest()
{
xBuf = new byte[4];
}
internal GeneralDigest(GeneralDigest t)
{
xBuf = new byte[t.xBuf.Length];
Array.Copy(t.xBuf, 0, xBuf, 0, t.xBuf.Length);
xBufOff = t.xBufOff;
byteCount = t.byteCount;
}
public void Update(byte input)
{
xBuf[xBufOff++] = input;
if (xBufOff == xBuf.Length)
{
ProcessWord(xBuf, 0);
xBufOff = 0;
}
byteCount++;
}
public void BlockUpdate(
byte[] input,
int inOff,
int length)
{
//
// fill the current word
//
while ((xBufOff != 0) && (length > 0))
{
Update(input[inOff]);
inOff++;
length--;
}
//
// process whole words.
//
while (length > xBuf.Length)
{
ProcessWord(input, inOff);
inOff += xBuf.Length;
length -= xBuf.Length;
byteCount += xBuf.Length;
}
//
// load in the remainder.
//
while (length > 0)
{
Update(input[inOff]);
inOff++;
length--;
}
}
public void Finish()
{
long bitLength = (byteCount << 3);
//
// add the pad bytes.
//
Update(unchecked((byte)128));
while (xBufOff != 0) Update(unchecked((byte)0));
ProcessLength(bitLength);
ProcessBlock();
}
public virtual void Reset()
{
byteCount = 0;
xBufOff = 0;
Array.Clear(xBuf, 0, xBuf.Length);
}
public int GetByteLength()
{
return BYTE_LENGTH;
}
internal abstract void ProcessWord(byte[] input, int inOff);
internal abstract void ProcessLength(long bitLength);
internal abstract void ProcessBlock();
public abstract string AlgorithmName { get; }
public abstract int GetDigestSize();
public abstract int DoFinal(byte[] output, int outOff);
}
public class SupportClass
{
/// <summary>
/// Performs an unsigned bitwise right shift with the specified number
/// </summary>
/// <param name="number">Number to operate on</param>
/// <param name="bits">Ammount of bits to shift</param>
/// <returns>The resulting number from the shift operation</returns>
public static int URShift(int number, int bits)
{
if (number >= 0)
return number >> bits;
else
return (number >> bits) + (2 << ~bits);
}
/// <summary>
/// Performs an unsigned bitwise right shift with the specified number
/// </summary>
/// <param name="number">Number to operate on</param>
/// <param name="bits">Ammount of bits to shift</param>
/// <returns>The resulting number from the shift operation</returns>
public static int URShift(int number, long bits)
{
return URShift(number, (int)bits);
}
/// <summary>
/// Performs an unsigned bitwise right shift with the specified number
/// </summary>
/// <param name="number">Number to operate on</param>
/// <param name="bits">Ammount of bits to shift</param>
/// <returns>The resulting number from the shift operation</returns>
public static long URShift(long number, int bits)
{
if (number >= 0)
return number >> bits;
else
return (number >> bits) + (2L << ~bits);
}
/// <summary>
/// Performs an unsigned bitwise right shift with the specified number
/// </summary>
/// <param name="number">Number to operate on</param>
/// <param name="bits">Ammount of bits to shift</param>
/// <returns>The resulting number from the shift operation</returns>
public static long URShift(long number, long bits)
{
return URShift(number, (int)bits);
}
}
public class SM3Digest : GeneralDigest
{
public override string AlgorithmName
{
get
{
return "SM3";
}
}
public override int GetDigestSize()
{
return DIGEST_LENGTH;
}
private const int DIGEST_LENGTH = 32;
private static readonly int[] v0 = new int[]{0x7380166f, 0x4914b2b9, 0x172442d7, unchecked((int) 0xda8a0600), unchecked((int) 0xa96f30bc), 0x163138aa, unchecked((int) 0xe38dee4d), unchecked((int) 0xb0fb0e4e)};
private int[] v = new int[8];
private int[] v_ = new int[8];
private static readonly int[] X0 = new int[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
private int[] X = new int[68];
private int xOff;
private int T_00_15 = 0x79cc4519;
private int T_16_63 = 0x7a879d8a;
public SM3Digest()
{
Reset();
}
public SM3Digest(SM3Digest t):base(t)
{
Array.Copy(t.X, 0, X, 0, t.X.Length);
xOff = t.xOff;
Array.Copy(t.v, 0, v, 0, t.v.Length);
}
public override void Reset()
{
base.Reset();
Array.Copy(v0, 0, v, 0, v0.Length);
xOff = 0;
Array.Copy(X0, 0, X, 0, X0.Length);
}
internal override void ProcessBlock()
{
int i;
int[] ww = X;
int[] ww_ = new int[64];
for (i = 16; i < 68; i++)
{
ww[i] = P1(ww[i - 16] ^ ww[i - 9] ^ (ROTATE(ww[i - 3], 15))) ^ (ROTATE(ww[i - 13], 7)) ^ ww[i - 6];
}
for (i = 0; i < 64; i++)
{
ww_[i] = ww[i] ^ ww[i + 4];
}
int[] vv = v;
int[] vv_ = v_;
Array.Copy(vv, 0, vv_, 0, v0.Length);
int SS1, SS2, TT1, TT2, aaa;
for (i = 0; i < 16; i++)
{
aaa = ROTATE(vv_[0], 12);
SS1 = aaa + vv_[4] + ROTATE(T_00_15, i);
SS1 = ROTATE(SS1, 7);
SS2 = SS1 ^ aaa;
TT1 = FF_00_15(vv_[0], vv_[1], vv_[2]) + vv_[3] + SS2 + ww_[i];
TT2 = GG_00_15(vv_[4], vv_[5], vv_[6]) + vv_[7] + SS1 + ww[i];
vv_[3] = vv_[2];
vv_[2] = ROTATE(vv_[1], 9);
vv_[1] = vv_[0];
vv_[0] = TT1;
vv_[7] = vv_[6];
vv_[6] = ROTATE(vv_[5], 19);
vv_[5] = vv_[4];
vv_[4] = P0(TT2);
}
for (i = 16; i < 64; i++)
{
aaa = ROTATE(vv_[0], 12);
SS1 = aaa + vv_[4] + ROTATE(T_16_63, i);
SS1 = ROTATE(SS1, 7);
SS2 = SS1 ^ aaa;
TT1 = FF_16_63(vv_[0], vv_[1], vv_[2]) + vv_[3] + SS2 + ww_[i];
TT2 = GG_16_63(vv_[4], vv_[5], vv_[6]) + vv_[7] + SS1 + ww[i];
vv_[3] = vv_[2];
vv_[2] = ROTATE(vv_[1], 9);
vv_[1] = vv_[0];
vv_[0] = TT1;
vv_[7] = vv_[6];
vv_[6] = ROTATE(vv_[5], 19);
vv_[5] = vv_[4];
vv_[4] = P0(TT2);
}
for (i = 0; i < 8; i++)
{
vv[i] ^= vv_[i];
}
// Reset
xOff = 0;
Array.Copy(X0, 0, X, 0, X0.Length);
}
internal override void ProcessWord(byte[] in_Renamed, int inOff)
{
int n = in_Renamed[inOff] << 24;
n |= (in_Renamed[++inOff] & 0xff) << 16;
n |= (in_Renamed[++inOff] & 0xff) << 8;
n |= (in_Renamed[++inOff] & 0xff);
X[xOff] = n;
if (++xOff == 16)
{
ProcessBlock();
}
}
internal override void ProcessLength(long bitLength)
{
if (xOff > 14)
{
ProcessBlock();
}
X[14] = (int) (SupportClass.URShift(bitLength, 32));
X[15] = (int) (bitLength & unchecked((int) 0xffffffff));
}
public static void IntToBigEndian(int n, byte[] bs, int off)
{
bs[off] = (byte) (SupportClass.URShift(n, 24));
bs[++off] = (byte) (SupportClass.URShift(n, 16));
bs[++off] = (byte) (SupportClass.URShift(n, 8));
bs[++off] = (byte) (n);
}
public override int DoFinal(byte[] out_Renamed, int outOff)
{
Finish();
for (int i = 0; i < 8; i++)
{
IntToBigEndian(v[i], out_Renamed, outOff + i * 4);
}
Reset();
return DIGEST_LENGTH;
}
private int ROTATE(int x, int n)
{
return (x << n) | (SupportClass.URShift(x, (32 - n)));
}
private int P0(int X)
{
return ((X) ^ ROTATE((X), 9) ^ ROTATE((X), 17));
}
private int P1(int X)
{
return ((X) ^ ROTATE((X), 15) ^ ROTATE((X), 23));
}
private int FF_00_15(int X, int Y, int Z)
{
return (X ^ Y ^ Z);
}
private int FF_16_63(int X, int Y, int Z)
{
return ((X & Y) | (X & Z) | (Y & Z));
}
private int GG_00_15(int X, int Y, int Z)
{
return (X ^ Y ^ Z);
}
private int GG_16_63(int X, int Y, int Z)
{
return ((X & Y) | (~ X & Z));
}
//[STAThread]
//public static void Main()
//{
// byte[] md = new byte[32];
// byte[] msg1 = Encoding.Default.GetBytes("ererfeiisgod");
// SM3Digest sm3 = new SM3Digest();
// sm3.BlockUpdate(msg1, 0, msg1.Length);
// sm3.DoFinal(md, 0);
// System.String s = new UTF8Encoding().GetString(Hex.Encode(md));
// System.Console.Out.WriteLine(s.ToUpper());
// Console.ReadLine();
//}
}
}
三、SM4
主类
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Com.Mlq.SM
{
class SM4
{
public const int SM4_ENCRYPT = 1;
public const int SM4_DECRYPT = 0;
private long GET_ULONG_BE(byte[] b, int i)
{
long n = (long)(b[i] & 0xff) << 24 | (long)((b[i + 1] & 0xff) << 16) | (long)((b[i + 2] & 0xff) << 8) | (long)(b[i + 3] & 0xff) & 0xffffffffL;
return n;
}
private void PUT_ULONG_BE(long n, byte[] b, int i)
{
b[i] = (byte)(int)(0xFF & n >> 24);
b[i + 1] = (byte)(int)(0xFF & n >> 16);
b[i + 2] = (byte)(int)(0xFF & n >> 8);
b[i + 3] = (byte)(int)(0xFF & n);
}
private long SHL(long x, int n)
{
return (x & 0xFFFFFFFF) << n;
}
private long ROTL(long x, int n)
{
return SHL(x, n) | x >> (32 - n);
}
private void SWAP(long[] sk, int i)
{
long t = sk[i];
sk[i] = sk[(31 - i)];
sk[(31 - i)] = t;
}
public byte[] SboxTable = new byte[] { (byte) 0xd6, (byte) 0x90, (byte) 0xe9, (byte) 0xfe,
(byte) 0xcc, (byte) 0xe1, 0x3d, (byte) 0xb7, 0x16, (byte) 0xb6,
0x14, (byte) 0xc2, 0x28, (byte) 0xfb, 0x2c, 0x05, 0x2b, 0x67,
(byte) 0x9a, 0x76, 0x2a, (byte) 0xbe, 0x04, (byte) 0xc3,
(byte) 0xaa, 0x44, 0x13, 0x26, 0x49, (byte) 0x86, 0x06,
(byte) 0x99, (byte) 0x9c, 0x42, 0x50, (byte) 0xf4, (byte) 0x91,
(byte) 0xef, (byte) 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43,
(byte) 0xed, (byte) 0xcf, (byte) 0xac, 0x62, (byte) 0xe4,
(byte) 0xb3, 0x1c, (byte) 0xa9, (byte) 0xc9, 0x08, (byte) 0xe8,
(byte) 0x95, (byte) 0x80, (byte) 0xdf, (byte) 0x94, (byte) 0xfa,
0x75, (byte) 0x8f, 0x3f, (byte) 0xa6, 0x47, 0x07, (byte) 0xa7,
(byte) 0xfc, (byte) 0xf3, 0x73, 0x17, (byte) 0xba, (byte) 0x83,
0x59, 0x3c, 0x19, (byte) 0xe6, (byte) 0x85, 0x4f, (byte) 0xa8,
0x68, 0x6b, (byte) 0x81, (byte) 0xb2, 0x71, 0x64, (byte) 0xda,
(byte) 0x8b, (byte) 0xf8, (byte) 0xeb, 0x0f, 0x4b, 0x70, 0x56,
(byte) 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, (byte) 0xd1,
(byte) 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, (byte) 0x87,
(byte) 0xd4, 0x00, 0x46, 0x57, (byte) 0x9f, (byte) 0xd3, 0x27,
0x52, 0x4c, 0x36, 0x02, (byte) 0xe7, (byte) 0xa0, (byte) 0xc4,
(byte) 0xc8, (byte) 0x9e, (byte) 0xea, (byte) 0xbf, (byte) 0x8a,
(byte) 0xd2, 0x40, (byte) 0xc7, 0x38, (byte) 0xb5, (byte) 0xa3,
(byte) 0xf7, (byte) 0xf2, (byte) 0xce, (byte) 0xf9, 0x61, 0x15,
(byte) 0xa1, (byte) 0xe0, (byte) 0xae, 0x5d, (byte) 0xa4,
(byte) 0x9b, 0x34, 0x1a, 0x55, (byte) 0xad, (byte) 0x93, 0x32,
0x30, (byte) 0xf5, (byte) 0x8c, (byte) 0xb1, (byte) 0xe3, 0x1d,
(byte) 0xf6, (byte) 0xe2, 0x2e, (byte) 0x82, 0x66, (byte) 0xca,
0x60, (byte) 0xc0, 0x29, 0x23, (byte) 0xab, 0x0d, 0x53, 0x4e, 0x6f,
(byte) 0xd5, (byte) 0xdb, 0x37, 0x45, (byte) 0xde, (byte) 0xfd,
(byte) 0x8e, 0x2f, 0x03, (byte) 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b,
0x51, (byte) 0x8d, 0x1b, (byte) 0xaf, (byte) 0x92, (byte) 0xbb,
(byte) 0xdd, (byte) 0xbc, 0x7f, 0x11, (byte) 0xd9, 0x5c, 0x41,
0x1f, 0x10, 0x5a, (byte) 0xd8, 0x0a, (byte) 0xc1, 0x31,
(byte) 0x88, (byte) 0xa5, (byte) 0xcd, 0x7b, (byte) 0xbd, 0x2d,
0x74, (byte) 0xd0, 0x12, (byte) 0xb8, (byte) 0xe5, (byte) 0xb4,
(byte) 0xb0, (byte) 0x89, 0x69, (byte) 0x97, 0x4a, 0x0c,
(byte) 0x96, 0x77, 0x7e, 0x65, (byte) 0xb9, (byte) 0xf1, 0x09,
(byte) 0xc5, 0x6e, (byte) 0xc6, (byte) 0x84, 0x18, (byte) 0xf0,
0x7d, (byte) 0xec, 0x3a, (byte) 0xdc, 0x4d, 0x20, 0x79,
(byte) 0xee, 0x5f, 0x3e, (byte) 0xd7, (byte) 0xcb, 0x39, 0x48 };
public uint[] FK = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc };
public uint[] CK = { 0x00070e15,0x1c232a31,0x383f464d,0x545b6269,
0x70777e85,0x8c939aa1,0xa8afb6bd,0xc4cbd2d9,
0xe0e7eef5,0xfc030a11,0x181f262d,0x343b4249,
0x50575e65,0x6c737a81,0x888f969d,0xa4abb2b9,
0xc0c7ced5,0xdce3eaf1,0xf8ff060d,0x141b2229,
0x30373e45,0x4c535a61,0x686f767d,0x848b9299,
0xa0a7aeb5,0xbcc3cad1,0xd8dfe6ed,0xf4fb0209,
0x10171e25,0x2c333a41,0x484f565d,0x646b7279 };
private byte sm4Sbox(byte inch)
{
int i = inch & 0xFF;
byte retVal = SboxTable[i];
return retVal;
}
private long sm4Lt(long ka)
{
long bb = 0L;
long c = 0L;
byte[] a = new byte[4];
byte[] b = new byte[4];
PUT_ULONG_BE(ka, a, 0);
b[0] = sm4Sbox(a[0]);
b[1] = sm4Sbox(a[1]);
b[2] = sm4Sbox(a[2]);
b[3] = sm4Sbox(a[3]);
bb = GET_ULONG_BE(b, 0);
c = bb ^ ROTL(bb, 2) ^ ROTL(bb, 10) ^ ROTL(bb, 18) ^ ROTL(bb, 24);
return c;
}
private long sm4F(long x0, long x1, long x2, long x3, long rk)
{
return x0 ^ sm4Lt(x1 ^ x2 ^ x3 ^ rk);
}
private long sm4CalciRK(long ka)
{
long bb = 0L;
long rk = 0L;
byte[] a = new byte[4];
byte[] b = new byte[4];
PUT_ULONG_BE(ka, a, 0);
b[0] = sm4Sbox(a[0]);
b[1] = sm4Sbox(a[1]);
b[2] = sm4Sbox(a[2]);
b[3] = sm4Sbox(a[3]);
bb = GET_ULONG_BE(b, 0);
rk = bb ^ ROTL(bb, 13) ^ ROTL(bb, 23);
return rk;
}
private void sm4_setkey(long[] SK, byte[] key)
{
long[] MK = new long[4];
long[] k = new long[36];
int i = 0;
MK[0] = GET_ULONG_BE(key, 0);
MK[1] = GET_ULONG_BE(key, 4);
MK[2] = GET_ULONG_BE(key, 8);
MK[3] = GET_ULONG_BE(key, 12);
k[0] = MK[0] ^ (long) FK[0];
k[1] = MK[1] ^ (long) FK[1];
k[2] = MK[2] ^ (long) FK[2];
k[3] = MK[3] ^ (long) FK[3];
for (; i < 32; i++)
{
k[(i + 4)] = (k[i] ^ sm4CalciRK(k[(i + 1)] ^ k[(i + 2)] ^ k[(i + 3)] ^ (long) CK[i]));
SK[i] = k[(i + 4)];
}
}
private void sm4_one_round(long[] sk, byte[] input, byte[] output)
{
int i = 0;
long[] ulbuf = new long[36];
ulbuf[0] = GET_ULONG_BE(input, 0);
ulbuf[1] = GET_ULONG_BE(input, 4);
ulbuf[2] = GET_ULONG_BE(input, 8);
ulbuf[3] = GET_ULONG_BE(input, 12);
while (i < 32)
{
ulbuf[(i + 4)] = sm4F(ulbuf[i], ulbuf[(i + 1)], ulbuf[(i + 2)], ulbuf[(i + 3)], sk[i]);
i++;
}
PUT_ULONG_BE(ulbuf[35], output, 0);
PUT_ULONG_BE(ulbuf[34], output, 4);
PUT_ULONG_BE(ulbuf[33], output, 8);
PUT_ULONG_BE(ulbuf[32], output, 12);
}
private byte[] padding(byte[] input, int mode)
{
if (input == null)
{
return null;
}
byte[] ret = (byte[]) null;
if (mode == SM4_ENCRYPT)
{
int p = 16 - input.Length % 16;
ret = new byte[input.Length + p];
Array.Copy(input, 0, ret, 0, input.Length);
for (int i = 0; i < p; i++)
{
ret[input.Length + i] = (byte) p;
}
}
else
{
int p = input[input.Length - 1];
ret = new byte[input.Length - p];
Array.Copy(input, 0, ret, 0, input.Length - p);
}
return ret;
}
public void sm4_setkey_enc(SM4_Context ctx, byte[] key)
{
ctx.mode = SM4_ENCRYPT;
sm4_setkey(ctx.sk, key);
}
public void sm4_setkey_dec(SM4_Context ctx, byte[] key)
{
int i = 0;
ctx.mode = SM4_DECRYPT;
sm4_setkey(ctx.sk, key);
for (i = 0; i < 16; i++)
{
SWAP(ctx.sk, i);
}
}
public byte[] sm4_crypt_ecb(SM4_Context ctx, byte[] input)
{
if ((ctx.isPadding) && (ctx.mode == SM4_ENCRYPT))
{
input = padding(input, SM4_ENCRYPT);
}
int length = input.Length;
byte[] bins = new byte[length];
Array.Copy(input,0,bins,0,length);
byte[] bous = new byte[length];
for(int i = 0 ; length > 0; length -= 16,i ++)
{
byte[] inBytes = new byte[16];
byte[] outBytes = new byte[16];
Array.Copy(bins, i * 16, inBytes, 0, length > 16 ? 16 : length);
sm4_one_round(ctx.sk, inBytes, outBytes);
Array.Copy(outBytes, 0, bous, i * 16, length > 16 ? 16 : length);
}
if (ctx.isPadding && ctx.mode == SM4_DECRYPT)
{
bous = padding(bous, SM4_DECRYPT);
}
return bous;
}
public byte[] sm4_crypt_cbc(SM4_Context ctx, byte[] iv, byte[] input)
{
if (ctx.isPadding && ctx.mode == SM4_ENCRYPT)
{
input = padding(input, SM4_ENCRYPT);
}
int i = 0;
int length = input.Length;
byte[] bins = new byte[length];
Array.Copy(input,0,bins,0,length);
byte[] bous = null;
List<byte> bousList = new List<byte>();
if (ctx.mode == SM4_ENCRYPT)
{
for(int j = 0; length > 0; length -= 16 , j ++)
{
byte[] inBytes = new byte[16];
byte[] outBytes = new byte[16];
byte[] out1 = new byte[16];
Array.Copy(bins, i * 16, inBytes, 0, length > 16 ? 16 : length);
for (i = 0; i < 16; i++)
{
outBytes[i] = ((byte) (inBytes[i] ^ iv[i]));
}
sm4_one_round(ctx.sk, outBytes, out1);
Array.Copy(out1, 0, iv, 0, 16);
for(int k = 0;k < 16;k ++){
bousList.Add(out1[k]);
}
}
}
else
{
byte[] temp = new byte[16];
for(int j = 0; length > 0; length -= 16 , j ++)
{
byte[] inBytes = new byte[16];
byte[] outBytes = new byte[16];
byte[] out1 = new byte[16];
Array.Copy(bins, i * 16, inBytes, 0, length > 16 ? 16 : length);
Array.Copy(inBytes, 0, temp, 0, 16);
sm4_one_round(ctx.sk, inBytes, outBytes);
for (i = 0; i < 16; i++)
{
out1[i] = ((byte) (outBytes[i] ^ iv[i]));
}
Array.Copy(temp, 0, iv, 0, 16);
for (int k = 0; k < 16; k++)
{
bousList.Add(out1[k]);
}
}
}
if (ctx.isPadding && ctx.mode == SM4_DECRYPT)
{
bous = padding(bousList.ToArray(), SM4_DECRYPT);
return bous;
}
else
{
return bousList.ToArray();
}
}
}
}
SM4实体类
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Com.Mlq.SM
{
class SM4_Context
{
public int mode;
public long[] sk;
public bool isPadding;
public SM4_Context()
{
this.mode = 1;
this.isPadding = true;
this.sk = new long[32];
}
}
}
SM4工具类
using Org.BouncyCastle.Utilities.Encoders;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Com.Mlq.SM
{
class SM4Utils
{
public String secretKey = "";
public String iv = "";
public bool hexString = false;
public String Encrypt_ECB(String plainText)
{
SM4_Context ctx = new SM4_Context();
ctx.isPadding = true;
ctx.mode = SM4.SM4_ENCRYPT;
byte[] keyBytes;
if (hexString)
{
keyBytes = Hex.Decode(secretKey);
}
else
{
keyBytes = Encoding.Default.GetBytes(secretKey);
}
SM4 sm4 = new SM4();
sm4.sm4_setkey_enc(ctx, keyBytes);
byte[] encrypted = sm4.sm4_crypt_ecb(ctx, Encoding.Default.GetBytes(plainText));
String cipherText = Encoding.Default.GetString(Hex.Encode(encrypted));
return cipherText;
}
public String Decrypt_ECB(String cipherText)
{
SM4_Context ctx = new SM4_Context();
ctx.isPadding = true;
ctx.mode = SM4.SM4_DECRYPT;
byte[] keyBytes;
if (hexString)
{
keyBytes = Hex.Decode(secretKey);
}
else
{
keyBytes = Encoding.Default.GetBytes(secretKey);
}
SM4 sm4 = new SM4();
sm4.sm4_setkey_dec(ctx, keyBytes);
byte[] decrypted = sm4.sm4_crypt_ecb(ctx, Hex.Decode(cipherText));
return Encoding.Default.GetString(decrypted);
}
public String Encrypt_CBC(String plainText)
{
SM4_Context ctx = new SM4_Context();
ctx.isPadding = true;
ctx.mode = SM4.SM4_ENCRYPT;
byte[] keyBytes;
byte[] ivBytes;
if (hexString)
{
keyBytes = Hex.Decode(secretKey);
ivBytes = Hex.Decode(iv);
}
else
{
keyBytes = Encoding.Default.GetBytes(secretKey);
ivBytes = Encoding.Default.GetBytes(iv);
}
SM4 sm4 = new SM4();
sm4.sm4_setkey_enc(ctx, keyBytes);
byte[] encrypted = sm4.sm4_crypt_cbc(ctx, ivBytes, Encoding.Default.GetBytes(plainText));
String cipherText = Encoding.Default.GetString(Hex.Encode(encrypted));
return cipherText;
}
public String Decrypt_CBC(String cipherText)
{
SM4_Context ctx = new SM4_Context();
ctx.isPadding = true;
ctx.mode = SM4.SM4_DECRYPT;
byte[] keyBytes;
byte[] ivBytes;
if (hexString)
{
keyBytes = Hex.Decode(secretKey);
ivBytes = Hex.Decode(iv);
}
else
{
keyBytes = Encoding.Default.GetBytes(secretKey);
ivBytes = Encoding.Default.GetBytes(iv);
}
SM4 sm4 = new SM4();
sm4.sm4_setkey_dec(ctx, keyBytes);
byte[] decrypted = sm4.sm4_crypt_cbc(ctx, ivBytes, Hex.Decode(cipherText));
return Encoding.Default.GetString(decrypted);
}
//[STAThread]
//public static void Main()
//{
// String plainText = "ererfeiisgod";
// SM4Utils sm4 = new SM4Utils();
// sm4.secretKey = "JeF8U9wHFOMfs2Y8";
// sm4.hexString = false;
// System.Console.Out.WriteLine("ECB模式");
// String cipherText = sm4.Encrypt_ECB(plainText);
// System.Console.Out.WriteLine("密文: " + cipherText);
// System.Console.Out.WriteLine("");
// plainText = sm4.Decrypt_ECB(cipherText);
// System.Console.Out.WriteLine("明文: " + plainText);
// System.Console.Out.WriteLine("");
// System.Console.Out.WriteLine("CBC模式");
// sm4.iv = "UISwD9fW6cFh9SNS";
// cipherText = sm4.Encrypt_CBC(plainText);
// System.Console.Out.WriteLine("密文: " + cipherText);
// System.Console.Out.WriteLine("");
// plainText = sm4.Decrypt_CBC(cipherText);
// System.Console.Out.WriteLine("明文: " + plainText);
// Console.ReadLine();
//}
}
}