ThreadPoolTaskExecutor有两种提交方法execute和submit:
无返回值的任务使用public void execute(Runnable command) 方法提交;
有返回值的任务使用public <T> Future<T> submit(Callable) 方法提交
。
下面具体来看下两者的应用以及区别。
一、与主线程执行顺序的区别:
1、(1)public void execute(Runnable command) 方法提交,子线程可能在主线程结束之后结束;
举例:
@RequestMapping("/execute")
public String execute(){
System.out.println("进入方法");
threadPoolTaskExecutor.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(20000);
System.out.println("sleep后");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
System.out.println("执行提交后");
return "aa";
}
请求后打印:
进入方法
执行提交后
sleep后
可见,由于子线程比较耗时,主线程结束后子线程还没有执行完。
(2)public <T> Future<T> submit(Callable) 方法提交,因为提交任务后有个取数据的过程,在从
Future取数据的过程中,Callable自带的阻塞机制,这个机制保证主线程一定在子线程结束之后结束。反之如果没有取数据,子线程可能会在主线程结束之后才结束。
举例说明:
package exceldemo.task;
import exceldemo.dto.User;
import exceldemo.service.UserService;
import java.util.List;
import java.util.concurrent.Callable;
public class UserTaskTest implements Callable<List<User>> {
private List<Integer> ids;
private UserService userService;
public UserTaskTest(List<Integer> childIds, UserService userService) {
System.out.println("构造");
this.ids = childIds;
this.userService = userService;
}
@Override
public List<User> call() throws Exception {
Thread.sleep(4000);
System.out.println("执行");
return userService.getByIds(ids);
}
}
例a:submit提交任务之后没有取数据:
package exceldemo.rest;
import exceldemo.dto.User;
import exceldemo.service.UserService;
import exceldemo.task.UserTaskTest;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Future;
@RestController
@RequestMapping("/order")
public class OrderTest {
@Autowired
private ThreadPoolTaskExecutor threadPoolTaskExecutor;
@Autowired
private UserService userService;
@RequestMapping("/submit")
public List<User> submit(){
List<Integer> ids = new ArrayList<>();
for(int i = 0;i<=500;i++){
ids.add(i);
}
//异步获取所有用户
List<User> users = new ArrayList<>();
List<Future> futures = new ArrayList<>();
for (int i = 0; i < ids.size(); i += 100) {
int startIndex = i;
int endIndex = startIndex + 100 > ids.size() ? ids.size() : startIndex + 100;
UserTaskTest task = new UserTaskTest(ids.subList(startIndex, endIndex),userService);
Future<List<User>> future = threadPoolTaskExecutor.submit(task);
System.out.println("加入futurn");
futures.add(future);
}
System.out.println("返回结果"+users.size());
return users;
}
}
请求后后端打印:
构造
加入futurn
构造
加入futurn
构造
加入futurn
构造
加入futurn
构造
加入futurn
构造
加入futurn
返回结果0
执行
执行
执行
执行
执行
执行
可以看到子线程比较耗时,主线程结束之后,子线程还没有执行完;
例b:submit提交任务之后取数据:
@RequestMapping("/submit")
public List<User> submit(){
List<Integer> ids = new ArrayList<>();
for(int i = 0;i<=500;i++){
ids.add(i);
}
//异步获取所有用户
List<User> users = new ArrayList<>();
List<Future> futures = new ArrayList<>();
for (int i = 0; i < ids.size(); i += 100) {
int startIndex = i;
int endIndex = startIndex + 100 > ids.size() ? ids.size() : startIndex + 100;
UserTaskTest task = new UserTaskTest(ids.subList(startIndex, endIndex),userService);
Future<List<User>> future = threadPoolTaskExecutor.submit(task);
System.out.println("加入futurn");
futures.add(future);
}
//取数据
try{
System.out.println("获取数据");
for(Future future : futures){
System.out.println("获取数据内部");
users.addAll((List<User>) future.get());
}
}catch (Exception e){
}
System.out.println("返回结果"+users.size());
return users;
}
请求后后端打印:
构造
加入futurn
构造
加入futurn
构造
加入futurn
构造
加入futurn
构造
加入futurn
构造
加入futurn
获取数据
获取数据内部
执行
执行
执行
执行
执行
获取数据内部
获取数据内部
获取数据内部
获取数据内部
获取数据内部
执行
返回结果501
可以看到,即使子线程比主线程耗时,主线程也等子线程结束后才结束。
这两个例子证明了使用submit提交任务,提交后只要有从Future取数据的操作,就可以保证主线程在子线程结束后才结束。
************************************************************分割线****************************************************************************
2、下面再举个完整的例子,在子线程同样耗时以及主线程执行步骤一样的情况下比较execute和submit这两种方法:
线程池:
package exceldemo.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
@Configuration
public class ThreadPoolTaskExecutorConfig {
private static int CORE_POOL_SIZE = 5;
private static int MAX_POOL_SIZE = 1000;
@Bean(name="threadPoolTaskExecutor")
public ThreadPoolTaskExecutor serviceJobTaskExecutor(){
ThreadPoolTaskExecutor poolTaskExecutor = new ThreadPoolTaskExecutor();
//线程池维护线程的最少数量
poolTaskExecutor.setCorePoolSize(CORE_POOL_SIZE);
//线程池维护线程的最大数量
poolTaskExecutor.setMaxPoolSize(MAX_POOL_SIZE);
//线程池所使用的缓冲队列
poolTaskExecutor.setQueueCapacity(200);
//线程池维护线程所允许的空闲时间
poolTaskExecutor.setKeepAliveSeconds(30000);
poolTaskExecutor.setWaitForTasksToCompleteOnShutdown(true);
System.out.println(poolTaskExecutor);
return poolTaskExecutor;
}
}
controller接口:
package exceldemo.rest;
import exceldemo.task.MyOrderCallableTask;
import exceldemo.task.MyOrderRunnableTask;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
@RestController
@RequestMapping("/myOrderDemo")
public class MyOrderDemo {
@Autowired
private ThreadPoolTaskExecutor threadPoolTaskExecutor;
@RequestMapping("/execute")
public void execute(){
String str = "execute方法";
threadPoolTaskExecutor.execute(new MyOrderRunnableTask(str));
System.out.println("主线程调用结束");
}
@RequestMapping("/submit")
public String submit(){
String str = "submit方法";
Future<String> future = threadPoolTaskExecutor.submit(new MyOrderCallableTask(str));
try {
str = future.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
System.out.println("主线程调用结束");
return str;
}
}
Callable实现类:
package exceldemo.task;
import java.util.concurrent.Callable;
public class MyOrderCallableTask implements Callable<String> {
private String name;
public MyOrderCallableTask(String name) {
this.name = name;
}
@Override
public String call() throws Exception {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
name = "MyOrderCallableTask";
System.out.println("MyOrderCallableTask已执行");
return name;
}
}
Runnable实现类:
package exceldemo.task;
public class MyOrderRunnableTask implements Runnable{
private String name;
public MyOrderRunnableTask(String name){
this.name = name;
}
@Override
public void run() {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
name = "MyOrderRunnableTask";
System.out.println("MyOrderRunnableTask已执行");
}
}
启动类:
package exceldemo;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Primary;
import org.springframework.core.task.TaskExecutor;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}
启动项目后,
请求execute接口:
后端打印:
主线程调用结束
MyOrderRunnableTask已执行
请求submit方法:
后端打印:
MyOrderCallableTask已执行
主线程调用结束
验证结束。这也和他们的功能是保持一致的。不需要返回结果,主线程就不需要等待子线程执行;需要返回结果,主线程肯定需要等所有的子线程结束后汇总结果。所以在调用的时候也需要注意:
(1)如果主线程调用了ThreadPoolTaskExecutor的execute提交任务,且传递了参数给子线程,并且子线程在修改这个参数,调用后主线程就不应该再使用这个参数,因为这个参数的值已经无法确定了;
(2)如果主线程调用了ThreadPoolTaskExecutor的submit提交任务,记得要在调用的逻辑后面,从Future里面把返回值取出来(调用Future的get方法),否则就和execute的效果一样了。
二、处理异常的区别:Callable执行call时遇到异常会抛出,而Runnable执行run时遇到异常并不会抛出。
举例:
package com.demo.rest;
import com.demo.service.UserService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("/user")
public class UserController {
@Autowired
private UserService userService;
@RequestMapping("/submit")
public String submit(String param){
param = userService.submit(param);
return param;
}
@RequestMapping("/execute")
public String execute(String param){
String res = userService.execute(param);
return res;
}
}
package com.demo.service.impl;
import com.demo.dto.UserDTO;
import com.demo.mapper.UserMapper;
import com.demo.service.UserService;
import com.demo.task.UserCallableTask;
import com.demo.task.UserRunnableTask;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
@Service("userService")
public class UserServiceImpl implements UserService {
@Autowired
private ThreadPoolTaskExecutor threadPoolTaskExecutor;
@Autowired
private UserMapper userMapper;
@Override
public String submit(String param) {
Future<String> future = threadPoolTaskExecutor.submit(new UserCallableTask(param));
try {
param = future.get();
} catch (InterruptedException e) {
e.printStackTrace();
return "error";
} catch (ExecutionException e) {
e.printStackTrace();
return "error";
}
UserDTO user = new UserDTO();
user.setName(param);
userMapper.insert(user);
return param;
}
@Override
public String execute(String param) {
threadPoolTaskExecutor.execute(new UserRunnableTask(param,userMapper));
return "success";
}
}
task:
package com.demo.task;
import com.demo.dto.UserDTO;
import com.demo.mapper.UserMapper;
import java.util.concurrent.Callable;
public class UserCallableTask implements Callable<String> {
private String param;
public UserCallableTask (String param){
this.param = param;
}
@Override
public String call() throws Exception {
param += "UserCallableTask";
int a = 1/0;
return param;
}
}
package com.demo.task;
import com.demo.dto.UserDTO;
import com.demo.mapper.UserMapper;
public class UserRunnableTask implements Runnable {
private String param;
private UserMapper userMapper;
public UserRunnableTask (String param,UserMapper userMapper){
this.param = param;
this.userMapper = userMapper;
}
@Override
public void run() {
param += "UserRunnableTask";
UserDTO user = new UserDTO();
user.setName(param);
int a = 1/0;
userMapper.insert(user);
}
}
请求submit:
请求execute:
因为在两个task里面都加了异常1/0,所以请求这两个方法都不会往数据库插入数据。call方法抛出异常,service层捕获到后return就不再插入数据了,run方法自己遇到异常就终止了也不再往下执行。区别就再于二者对于异常的处理,调用sumbit方法执行时可以捕获异常,这样就可以自定义处理如把异常抛出给调用处(controller层),而execute的run方法遇到异常就自己终止了,主线程无法感知其运行成功与否。
有的人可能会想在调用execute时加上try...catch....,这个肯定是不可以的,这个try...catch...捕获的只是
threadPoolTaskExecutor.execute(new UserRunnableTask(param,userMapper));这个任务提交有没有异常,而这个任务和主线程是异步的,它实际执行的run方法主线程是捕获不到的。可以验证一下:
@Override
@Transactional
public String execute(String param) {
try{
threadPoolTaskExecutor.execute(new UserRunnableTask(param,userMapper));
}catch (Exception e){
System.out.println("有异常");
return "error";
}
return "success";
}
请求:
验证确实没有捕获到。
三、多线程与事务回滚:
上述,如果在事务中调用了多线程,submit遇到异常会抛出且必须被捕获,不会触发回滚,execute遇到异常主线程无法感知,也不会触发回滚。那如果需要在多线程调用时实现事务回滚该怎么做呢?这就需要加入其它的操作了:
1、submit方法与事务回滚:我们知道sumbit方法提交线程在获取返回结果时是需要捕获异常的,那么我们就可以在捕获到异常时手动回滚当前事务。
(1)主线程正常,子线程发生异常,只回滚主线程:这种情况比较简单,主线程捕获异常后直接TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();回滚主线程就可以了:
package com.demo.service.impl;
import com.demo.dto.UserDTO;
import com.demo.mapper.UserMapper;
import com.demo.service.UserService;
import com.demo.task.UserCallableTask;
import com.demo.task.UserRunnableTask;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.transaction.interceptor.TransactionAspectSupport;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
@Service("userService")
public class UserServiceImpl implements UserService {
@Autowired
private ThreadPoolTaskExecutor threadPoolTaskExecutor;
@Autowired
private UserMapper userMapper;
@Override
@Transactional
public String submit(String param) {
Future<String> future = threadPoolTaskExecutor.submit(new UserCallableTask(param,userMapper));
UserDTO user = new UserDTO();
user.setName("我是主线程");
userMapper.insert(user);
try {
param = future.get();
} catch (InterruptedException e) {
e.printStackTrace();
TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();
return "error";
} catch (ExecutionException e) {
e.printStackTrace();
TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();
return "error";
}
return param;
}
@Override
public String execute(String param) {
// threadPoolTaskExecutor.execute(new UserRunnableTask(param,userMapper));
return "success";
}
}
任务:
package com.demo.task;
import com.demo.dto.UserDTO;
import com.demo.mapper.UserMapper;
import java.util.concurrent.Callable;
public class UserCallableTask implements Callable<String> {
private String param;
private UserMapper userMapper;
public UserCallableTask(String param, UserMapper userMapper){
this.param = param;
this.userMapper = userMapper;
}
@Override
public String call() throws Exception {
param += "UserCallableTask";
UserDTO user = new UserDTO();
user.setName("我是子线程");
userMapper.insert(user);
int a = 1/0;
return param;
}
}
请求
数据库没有主线程的数据插入:
说明主线程回滚成功。
(2)、主线程或子线程异常,主线程、子线程全部回滚:同时回滚主线程和子线程,就需要把主线程和子线程放到同一个事务中。
说明主线程、子线程全部回滚成功。
2、execute方法:
四、