上面是我当时提问用的,折磨了我好几天,后来发现问题了,分析如下:
连接flume是通过
JavaReceiverInputDStream<SparkFlumeEvent> flumeStream = FlumeUtils.createStream(jssc, args[0], Integer.parseInt(args[1]));
FlumeUtils {
/**
* Create a input stream from a Flume source.
* @param ssc StreamingContext object
* @param hostname Hostname of the slave machine to which the flume data will be sent
* @param port Port of the slave machine to which the flume data will be sent
* @param storageLevel Storage level to use for storing the received objects
*/
def createStream (
ssc: StreamingContext,
hostname: String,
port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): ReceiverInputDStream[SparkFlumeEvent] = {
val inputStream = new FlumeInputDStream[SparkFlumeEvent](ssc, hostname, port, storageLevel)
inputStream
}
在跟进FlumeInputDStream内部:
class FlumeInputDStream[T: ClassTag](
@transient ssc_ : StreamingContext,
host: String,
port: Int,
storageLevel: StorageLevel
) extends ReceiverInputDStream[SparkFlumeEvent](ssc_) {
override def getReceiver(): Receiver[SparkFlumeEvent] = {
new FlumeReceiver(host, port, storageLevel)
}
}
在跟进FlumeReceiver
class FlumeReceiver(
host: String,
port: Int,
storageLevel: StorageLevel
) extends Receiver[SparkFlumeEvent](storageLevel) with Logging {
lazy val responder = new SpecificResponder(
classOf[AvroSourceProtocol], new FlumeEventServer(this))
lazy val server = new NettyServer(responder, new <span style="color:#ff0000;">InetSocketAddress</span>(host, port))
def onStart() {
server.start()
logInfo("Flume receiver started")
}
def onStop() {
server.close()
logInfo("Flume receiver stopped")
}
override def preferredLocation = Some(host)
}
这就是建立端口连接的地方了,我们会发现InetSocketAddress这个类,他属于Jdk的jar包rt.jar
现在把这个jar包也放入调用,命令里:
spark-submit --class com.kingsoft.spark.SparkFlumeTest --master yarn-cluster --executor-memory 10G --num-executors 50 --jars /home/hadoop/spark-streaming-flume_2.10-1.1.0.jar,/opt/cloudera/parcels/CDH-5.1.0-1.cdh5.1.0.p0.53/lib/avro/avro-ipc-1.7.5-cdh5.1.0.jar,/opt/cloudera/parcels/CDH-5.1.0-1.cdh5.1.0.p0.53/lib/flume-ng/lib/flume-ng-sdk-1.5.0-cdh5.1.0.jar,/home/hadoop/fastjson-1.1.41.jar,/home/hadoop/rt.jar/home/hadoop/SparkStreaming-0.0.1-SNAPSHOT.jar 10.4.22.16 58006
发现可以了,究其原因:主要是我们集群的JAVA_HOME没有设置的缘故。
PS:养成看源码的习惯,还是不错的。。
如果上面的解释有问题,还请路过的大神指点,谢谢
----------------------------------------------------------------------------------------------------
不是上面的问题,问题还在解决中~~~
----------------------------------------------------------------------------------------------------
折磨了我好几天的事情终于解决了,看看自己之前的排错信息,很是可笑啊,这件事还是自己对yarn和spark不了解所致:
详情可以看这篇文章:
从日志看是端口没有启动。查看下yarn container 上启动的worker,同样报没有绑定端口的异常。
查看 yarn 上job的启动的节点,在配置接收flume 数据的节点上,并没有worker的启动。问题正好出现这这里,由于yarn 上发布container 是有RM 根据集群的资源使用情况进行分配的,事先并不值得哪个节点上有启动到container,也就无法值得那个节点上有spark的worker了。更谈不上事先设置在启动spark stream 程序中的host 是否能真正有worker再运行了。这个或许是spark在yarn模式下的一个BUG 吧。
解决方法是,将host 修改为0.0.0.0 进行运行。等spark 程序启动后,查看在哪个节点上启动了接收flume流数据的端口,在将该主机和端口配置到flume的配置文件中,启动flume,就可以实现数据得传输了。
意思就是把程序提交到yarn集群后,RM会根据资源情况分配哪些container来执行这个程序,比如一个集群有1——10台node,在机器1上提交application到yarn,yarn的RM分配机器2和机器3上的container来执行该application,那么命令如下:
spark-submit --class com.kingsoft.spark.SparkFlumeTest --master yarn --deploy-mode cluster --jars /home/hadoop/spark-streaming-flume_2.10-1.0.1.jar,/home/hadoop/avro-ipc-1.7.5-cdh5.1.0.jar,/home/hadoop/flume-ng-sdk-1.5.0.1.jar,/home/hadoop/fastjson-1.1.41.jar /home/hadoop/SparkStreaming-0.0.1-SNAPSHOT.jar 10.4.22.16 58006 (10.4.22.16是机器1的IP)
但是在机器1上并没有运行application的程序,所以无法打开58006端口,这个是spark的BUG。解决办法是调用如下命令:
spark-submit --class com.kingsoft.spark.SparkFlumeTest --master yarn --deploy-mode cluster --jars /home/hadoop/spark-streaming-flume_2.10-1.0.1.jar,/home/hadoop/avro-ipc-1.7.5-cdh5.1.0.jar,/home/hadoop/flume-ng-sdk-1.5.0.1.jar,/home/hadoop/fastjson-1.1.41.jar /home/hadoop/SparkStreaming-0.0.1-SNAPSHOT.jar 0.0.0.0 58006
用0.0.0.0代替,不能使用127.0.0.1,否则flume连不上对应机器。(我也不知道为什么连不上)当application运行时,在到各个机器上去查看哪台机器的58006端口在listen。netstat -anp | grep 58006
这时把flume的配置文件改成该地址,重启就OK了。
啊,多么痛的领悟啊。
---------------------------------------------------------------------------------
启动命令中可以设置--num-executors 10,意思就是启动10个executors,在输出的日志中也会看到如下信息:
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app002041.hz01.ksyun.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app022054.hz01.ksyun.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app022045.hz01.ksyun.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app022018.ksc.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app002023.hz01.ksyun.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app022016.ksc.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app022055.hz01.ksyun.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app002024.hz01.ksyun.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app002026.hz01.ksyun.com:8041
15/01/22 15:32:50 INFO AMRMClientImpl: Received new token for : hz01-cs-app022042.hz01.ksyun.com:8041
就是在上面10个节点上会有一个节点启动flume监听端口,那么我们就需要挨个到对应的机器上去检查哪个被启动了。使用以下脚本,在调用时传入机器列表,就可以快速定位:
for arg in $* ; do
re=`ssh -o strictHostKeyChecking=no $arg -t "sudo netstat -anp | grep 58006 | grep LISTEN |wc -l"`
if [[ $re > "1" ]];then
echo $arg
fi
done
其中的58006是你对应启动的那个端口。前提是这个脚本所在的机器能够ssh到对应的机器列表中