使用sparkstreaming时,如果实时计算结果要写入到HDFS,默认情况下会产生非常多的小文件。那么假设,一个batch为10s,每个输出的DStream有32个partition,那么1h产生的文件数将会达到(3600/10)*32=11520个之多。众多小文件带来的结果是有大量的文件元信息,比如文件的location、文件大小、block number等需要NameNode来维护,NameNode会因此鸭梨山大。这里讨论几种处理Sparkstreaming小文件的典型方法。

增加batch大小

这种方法很容易理解,batch越大,从外部接收的event就越多,内存积累的数据也就越多,那么输出的文件数也就回变少,比如上边的时间从10s增加为100s,那么一个小时的文件数量就会减少到1152个。

Coalesce大法好?

文章开头讲了,小文件的基数是:batch_number*partition_number,而第一种方法是减少batch_number,那么这种方法就是减少partition_number了,就是减少初始的分区个数。所以Coalesce大法的好处就是,可以在最终要输出的时候,来减少一把partition个数。但是这个方法的缺点也很明显,本来是32个线程在写256M数据,现在可能变成了4个线程在写256M数据,而没有写完成这256M数据,这个batch是不算做结束的。那么一个batch的处理时延必定增长。

SparkStreaming外部来处理

我们既然把数据输出到hdfs,那么说明肯定是要用hive或者sparksql这样的“sql on hadoop”系统类进一步进行数据分析,而这些表一般都是按照半小时或者一小时、一天,那么我们可以考虑在SparkStreaming外再启动定时的批处理任务来合并SparkStreaming产生的小文件。

自己调用foreach去append

SparkStreaming提供的foreach这个outout类api,可以让我们自定义输出计算结果的方法。那么我们其实也可以利用这个特性,那就是每个batch在要写文件时,并不是去生成一个新的文件流,而是把之前的文件打开。考虑这种方法的可行性,首先,HDFS上的文件不支持修改,但是很多都支持追加,那么每个batch的每个partition就对应一个输出文件,每次都去追加这个partition对应的输出文件,这样也可以实现减少文件数量的目的。这种方法要注意的就是不能无限制的追加,当判断一个文件已经达到某一个阈值时,就要产生一个新的文件进行追加了。