Prometheus 的架构设计图

prometheus java 集成 prometheus 架构_本地存储

通过prometheus的架构图可以看出,prometheus提供了本地存储,即tsdb时序数据库。本地存储的优势就是运维简单,缺点就是无法海量的metrics持久化和数据存在丢失的风险,我们在实际使用过程中,出现过几次wal文件损坏,无法再写入的问题。
当然prometheus2.0以后压缩数据能力得到了很大的提升。为了解决单节点存储的限制,prometheus没有自己实现集群存储,而是提供了远程读写的接口,让用户自己选择合适的时序数据库来实现prometheus的扩展性。

prometheus通过下面两种方式来实现与其他的远端存储系统对接

  • Prometheus 按照标准的格式将metrics写到远端存储
  • prometheus 按照标准格式从远端的url来读取metrics
  • Prometheus按2小时一个block进行存储,每个block由一个目录组成,该目录里包含:一个或者多个chunk文件(保存timeseries数据)、一个metadata文件、一个index文件(通过metric name和labels查找timeseries数据在chunk文件的位置)。最新写入的数据保存在内存block中,达到2小时后写入磁盘。为了防止程序崩溃导致数据丢失,实现了WAL(write-ahead-log)机制,启动时会以写入日志(WAL)的方式来实现重播,从而恢复数据。删除数据时,删除条目会记录在独立的tombstone文件中,而不是立即从chunk文件删除。通过时间窗口的形式保存所有的样本数据,可以明显提高Prometheus的查询效率,当查询一段时间范围内的所有样本数据时,只需要简单的从落在该范围内的块中查询数据即可。这些2小时的block会在后台压缩成更大的block,数据压缩合并成更高level的block文件后删除低level的block文件。这个和leveldb、rocksdb等LSM树的思路一致。这些设计和Gorilla的设计高度相似,所以Prometheus几乎就是等于一个缓存TSDB。它本地存储的特点决定了它不能用于long-term数据存储,只能用于短期窗口的timeseries数据保存和查询,并且不具有高可用性(宕机会导致历史数据无法读取)。