Numpy常见函数及使用

本文后续边补充,边更新!

1. np.delete()

删除指定行

np.delete(x, i, axis=0)  #删除x矩阵 第i行



2. np.where()

返回输入数组中满足给定条件的元素的索引,返回值为元组类型

import numpy as np 
x = np.arange(9.).reshape(3,  3)  
print ('我们的数组是:')
print (x)
print ( '大于 3 的元素的索引:')
y = np.where(x > 3)  
print (y)
print ('使用这些索引来获取满足条件的元素:')
print (x[y])
结果:
我们的数组是:
[[0. 1. 2.]
 [3. 4. 5.]
 [6. 7. 8.]]
大于 3 的元素的索引(元组):
(array([1, 1, 2, 2, 2]), array([1, 2, 0, 1, 2]))
使用这些索引来获取满足条件的元素:
[4. 5. 6. 7. 8.]



3. np.load()

读取npy文件
默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为.npy的文件中。.npz为压缩文件。

>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
>>> np.load('/tmp/123.npy')
array([[1, 2, 3],
       [4, 5, 6]])

>>> a=np.array([[1, 2, 3], [4, 5, 6]])
>>> b=np.array([1, 2])
>>> np.savez('/tmp/123.npz', a=a, b=b)
>>> data = np.load('/tmp/123.npz')
>>> data['a']
array([[1, 2, 3],
       [4, 5, 6]])
>>> data['b']
array([1, 2])
>>> data.close()

>>> X = np.load('/tmp/123.npy', mmap_mode='r')
>>> X[1, :]
memmap([4, 5, 6])



4.np.item()

可以获取在numpy数组上给定索引处找到的数据元素。

# import the important module in python 
import numpy as np 

# make an array with numpy 
gfg = np.array([[1, 2, 3, 4, 5], 
                [6, 5, 4, 3, 2]]) 

print(gfg.item((1, 2)))   ## 结果为4



5. 连接数组

函数

描述

concatenate()

连接沿现有轴的数组序列

stack()

增加新一维度方式堆叠

hstack()

水平堆叠

vstack()

垂直堆叠

dstack()

深度堆叠

eg1.

a = np.array([[1,2],[3,4]])
b = np.array([[5,6],[7,8]])
print ('沿轴 0 连接两个数组:')
print (np.concatenate((a,b)))    # 默认是0轴
print ('沿轴 1 连接两个数组:')
print (np.concatenate((a,b),axis = 1))
#结果
第一个数组:
[[1 2]
 [3 4]]
第二个数组:
[[5 6]
 [7 8]]
沿轴 0 连接两个数组:
[[1 2]
 [3 4]
 [5 6]
 [7 8]]
沿轴 1 连接两个数组:
[[1 2 5 6]
 [3 4 7 8]]

eg2.

print(np.stack((arr1, arr2),0)) # 堆叠后维度增加,axis=0/1效果相同
print(np.vstack((arr1, arr2)))
print(np.hstack((arr1, arr2)))
print(np.dstack((arr1, arr2)))
# 结果
[[[1 2]
  [3 4]]
 [[5 6]
  [7 8]]]
  
[[ 1  2  3]
 [ 4  5  6]
 [ 7  8  9]
 [10 11 12]]
[[ 1  2  3  7  8  9]
 [ 4  5  6 10 11 12]]
[[[ 1  7]
  [ 2  8]
  [ 3  9]]

 [[ 4 10]
  [ 5 11]
  [ 6 12]]]




6. 修改数组维度

6.1 np.squeeze()

从数组的形状中删除一维条目,及shape中是1的维度。 例如维度为(1,2,5)->(2,5), (3,4)->(3,4)

np.squeeze()

eg.

c  = np.arange(10).reshape(2,5)
np.squeeze(c)
c.shape   # (2,5)
d  = np.arange(10).reshape(1,2,5)
np.squeeze(d)
d.shape   # (2,5)

x = np.arange(9).reshape(1,3,3)
y = np.squeeze(x)
print (x.shape, y.shape)
# 结果
(1, 3, 3) (3, 3)

6.2 np.expand_dims()

扩展数组的形状.

cat_mask = np.expand_dims(cat_mask, 0) # cat_mask从原来的[256,256]变为[1,256,256]



7. np.unique()

用于去除数组中的重复元素。函数原型:

numpy.unique(arr, return_index, return_inverse, return_counts)
  • arr:输入数组,如果不是一维数组则会展开
  • return_index:如果为true,返回新列表元素在旧列表中的位置(下标),并以列表形式储
  • return_inverse:如果为true,返回旧列表元素在新列表中的位置(下标),并以列表形式储
  • return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数
    eg.
a = np.array([5,2,6,2,7,5,6,8,2,9])
print (a)       # [5 2 6 2 7 5 6 8 2 9]
 
u = np.unique(a)
print (u)       # [2 5 6 7 8 9], 顺便排序了

u,indices = np.unique(a, return_index = True)
print (indices)     # [1 0 2 4 7 9]



8. 排序、条件筛选函数

用于给多个序列进行排序,想象成电子表格,优先排序后面的列。

numpy.lexsort()

eg.

nm =  ('raju','anil','ravi','amar') 
dv =  ('f.y.',  's.y.',  's.y.',  'f.y.') 
ind = np.lexsort((dv,nm))  

print (ind) 
print ([nm[i]  +  ", "  + dv[i]  for i in ind])
# 结果
[3 1 0 2]
['amar, f.y.', 'anil, s.y.', 'raju, f.y.', 'ravi, s.y.']



9. 连续内存数组

Numpy中,随机初始化的数组默认都是C连续的,经过不规则的slice操作,则会改变连续性。ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快

np.ascontiguousarray()

eg.

>>> x = np.arange(8).reshape(2,4)
>>> np.ascontiguousarray(x, dtype=np.float32)
array([[0., 1., 2., 3.],
       [4., 5., 6., 7.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True



10. 统计频率

像直方图一样,统计元素出现频率,并返回ndarray。

np.bincount()

x=np.array([0,1,1,3,2,1,7])
print(np.bincount(x))
# 结果
[1 3 1 1 0 0 0 1]



11. np.argmax()

返回数组中较大值所在的索引,这里针对一维、二维、三维或者高维数据。

import numpy as np
# 三维数组
a = np.array([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],

              [
                  [-1, 5, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]
            ])
print(np.argmax(a, axis=0)) 
结果:从[2,3,4]->[3,4]
[[0 0 0 0]
 [0 1 0 0]
 [1 0 1 0]]