图1
从图1可知,HFile主要分四部分:Scanned block section, Non-scanned block section, Load-on-open-section以及Trailer。
Scanned block section: 即存储数据block部分
Non-scanned block section:元数据block部分,主要存放meta信息,即BloomFilter信息。
Load-on-open-section:这部分数据在RegionServer启动时,实例化Region并创建HStore时会将所有StoreFile的Load-on-open-section加载进内存,主要存放了Root Data Index,meta Index,File Info及BooleamFilter的metadata等。除了Fields for midkey外,每部分都是一个HFileBlock.下面会详细去讲这块。
Trailer:文件尾,主要记录version版本,不同的版本Trailer的字段不一样,及Trailer的字段相关信息。
下面详细讲述各部分。
Trailer:
文件最后4位,即一个整型数字,为version信息,我们知道是V2.而V2的Trailer长度为212字节。除去MagicCode(BlockType) 8字节及 Version 4字节外,剩余206字节记录了整个文件的一些重要的字段信息,而这些字段信息是由protobuf组成的。
其格式如下:
至此,Trailer已经完全解析完成,接下来开始下一部分。
Load-on-open-section:
RegionServer托管着0...n个Region,Region管理着一个或多个HStore,其中HStore就管理着一个MemStore及多个StoreFile.
所在RegionServer启动时,会扫描所有StoreFile,加载StoreFile的相关信息到内存,而这部分内容就是Load-on-open-section,主要包括 Root数据索引,miidKyes(optional),Meta索引,File Info,及BloomFilter metadata等。
数据索引:
数据索引是分层的,可以1-3层,其中第一层,即Root level Data Index,这部分数据是处放在内存区的。一开始,文件比较小,只有single-level,rootIndex直接定位到了DataBlock。当StoreFile变大时,rootIndex越来越大,随之所耗内存增大,会以多层结构存储数据索引.当采用multi-level方式,level=2时,使用root index和leaf index chunk,即内存区的rootIndex定位到的是 leafIndex,再由leafIndex定位到Datablock。当一个文件的datablock非常多,采用的是三级索引,即rootIndex定位到intermediate index,再由intermediate index定位到leaf index,最后定位到data block.可以看看上面图1所示,各个level的index都是分布在不同的区域的。但每部分index是以HFileBlock格式存放的,后面会比较详细地讲HFileBlock,说白了,就是HFile中的一个块。
Fileds for midKey:
这部分数据是Optional的,保存了一些midKey信息,可以快速地定位到midKey,常常在HFileSplit的时候非常有用。
MetaIndex:
即meta的索引数据,和data index类似,但是meta存放的是BloomFilter的信息,关于BloomFilter由于篇幅就不深入讨论了.
FileInfo:
保存了一些文件的信息,如lastKey,avgKeylen,avgValueLen等等,一会我们将会写程序将这部分内容解析出来并打印看看是什么东西。同样,FileInfo使用了Protobuf来进行序列化。
Bloom filter metadata:
分为GENERAL_BLOOM_META及DELETE_FAMILY_BLOOM_META二种。
OK,下面开始操刀分割下Load-on-open-section的各个小块,看看究竟有什么东西。在开始分析之前,上面提到了一个HFileBlock想先看看。从上面可以看出来,其实基本每个小块都叫HFileBlock(除field for midkey),在Hbase中有一个类叫HFileBlock与之对应。从V2开始,即我们当前用的HFile版本,HFileBlock是支持checksum的,默认地使用CRC32,由此HFileBlock由header,data,checksum三部分内容组成,如下图所示。其中Header占了33个字节,字段是一样的,而每个block的组织会有些小差异。
图2
了解了HFileBlock的结构,我们下面开始正式解析内存区中的各个index的block内容。首先我们根据图2我们抽象出一个简单的HFileBlock实体。
开始解析Root Data Index和metaIndex .在Trailer解析后,我们可以得到Load-on-open-section内容的相关信息,可以构造字节数组,将这部分字节码load进内存进行解析,在解析之前先讲下FileInfo
FileInfo的内容是以ProtoBuf放式存放的,与Trailer类似,我们先创建FileInfo.proto
option java_package = "com.bdifn.hbase.hfile.proto";
option java_outer_classname = "FileInfoProtos";
option java_generic_services = true;
option java_generate_equals_and_hash = true;
option optimize_for = SPEED;
message BytesBytesPair {
required bytes first = 1;
required bytes second = 2;
}
message FileInfoProto {
repeated BytesBytesPair map_entry = 1;
}
编译: protoc FileInfo.proto --java_out=.
Non-scanned block section
Scanned block section:
这部分内容就是真正的数据块,从图1看出,这部分数据是分datablock存储的,默认地,每个datablock占64K,如果是多层的index的话,部分index block也会存放在这里,由于我的测试数据,是single-level的,所以只针对单级的index分析。
的single-level情况下,内存的rootDataIndex记录了每个datablock的偏移量,大小及startKey信息,主要是为了快速地定位到KeyValue的位置,在HFile中查找或者seek到某个KeyValue时,首先会在内存中,对rootDataIndex进行二分查找,单级的index可以直接定位DataBlock,然后通过迭代datablock定位到KeyValue所在的位置,而2-3层时,上面也略有提及,大家有时间的话,可以做多点研究这部分。
弱弱提句:在HStore中,会有cache将这些datablock缓存起来,使用LRU算法,这样会提高不少性能。
每个DataBlock同样也是一个HFileBlock,也包括header,data,checksum信息,可以用我们之前写的BlockIterator就可以搞定。下面使用代码,去遍历一个datablock看看。
实验3:
编写KeyValue遍历器
public class KeyValueIterator {
public static final int KEY_LENGTH_SIZE = 4;
public static final int VALUE_LENGTH_SIZE = 4;
private byte [] data ;
private int currentOffset ;
public KeyValueIterator(byte [] data) {
this.data = data;
currentOffset = 0;
}
public KeyValue nextKeyValue(){
KeyValue kv = null;
int keyLen = Bytes.toInt(data,currentOffset,4);
incrementOffset(KEY_LENGTH_SIZE);
int valueLen = Bytes.toInt(data,currentOffset,4);
incrementOffset(VALUE_LENGTH_SIZE);
//1 is memTS
incrementOffset(keyLen,valueLen,1);
int kvSize = KEY_LENGTH_SIZE + VALUE_LENGTH_SIZE + keyLen + valueLen ;
kv = new KeyValue(data , currentOffset - kvSize - 1, kvSize);
return kv;
}
public void incrementOffset(int ... lengths) {
for(int length : lengths)
currentOffset = currentOffset + length;
}
public boolean hasNext() {
return currentOffset < data.length;
}
}
编写测试代码:
//从rootDataReader中获取第一块的offset及数据大小
long offset = rootDataReader.getBlockOffsets()[0];
int size = rootDataReader.getBlockDataSizes()[0];
byte[] dataBlockArray = new byte[size];
input.seek(offset);
input.read(dataBlockArray);
//图方便,直接用iterator来解析出来FileBlock
MyHFileBlockIterator dataBlockIter = new MyHFileBlockIterator(dataBlockArray);
MyHFileBlock dataBlock1 = dataBlockIter.nextBlock();
//将data内容给一个keyvalue迭代器
KeyValueIterator kvIter = new KeyValueIterator(dataBlock1.getBlockBuf().array());
while (kvIter.hasNext()) {
KeyValue kv = kvIter.nextKeyValue();
//do some with keyvalue. like print the kv.
System.out.println(kv);
}
OK,基本上是这些内容了。有点抱歉一开篇讲得有点大了,其实没有方方面面都讲得很详细。meta,bloomfilter部分没有详细分析,大家有时间可以研究后,分享一下。