一.简介
那么这个SQL语句必须使用HiveContext执行。
二.代码实践【使用HiveContext】
package big.data.analyse.sparksql
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
/**
* Created by zhen on 2019/7/6.
*/
object RowNumber {
/**
* 设置日志级别
*/
Logger.getLogger("org").setLevel(Level.WARN)
def main(args: Array[String]) {
/**
* 创建spark入口,支持Hive
*/
val spark = SparkSession.builder().appName("RowNumber")
.master("local[2]").enableHiveSupport().getOrCreate()
/**
* 创建测试数据
*/
val array = Array("1,Hadoop,12","5,Spark,6","3,Solr,15","3,HBase,8","6,Hive,16","6,TensorFlow,26")
val rdd = spark.sparkContext.parallelize(array).map{ row =>
val Array(id, name, age) = row.split(",")
Row(id, name, age.toInt)
}
val structType = new StructType(Array(
StructField("id", StringType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
))
/**
* 转化为df
*/
val df = spark.createDataFrame(rdd, structType)
df.show()
df.createOrReplaceTempView("technology")
/**
* 应用开窗函数row_number
* 注意:开窗函数只能在hiveContext下使用
*/
val result_1 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top <= 1")
result_1.show()
val result_2 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top <= 2")
result_2.show()
val result_3 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top <= 3")
result_3.show()
val result_4 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top > 3")
result_4.show()
}
}
三.结果【使用HiveContext】
1.初始数据
2.top<=1时
3.top<=2时
4.top<=3时
5.top>3时【分组中最大为3】
四.代码实现【不使用HiveContext】
package big.data.analyse.sparksql
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
/**
* Created by zhen on 2019/7/6.
*/
object RowNumber {
/**
* 设置日志级别
*/
Logger.getLogger("org").setLevel(Level.WARN)
def main(args: Array[String]) {
/**
* 创建spark入口,不支持Hive
*/
val spark = SparkSession.builder().appName("RowNumber")
.master("local[2]").getOrCreate()
/**
* 创建测试数据
*/
val array = Array("1,Hadoop,12","5,Spark,6","3,Solr,15","3,HBase,8","6,Hive,16","6,TensorFlow,26")
val rdd = spark.sparkContext.parallelize(array).map{ row =>
val Array(id, name, age) = row.split(",")
Row(id, name, age.toInt)
}
val structType = new StructType(Array(
StructField("id", StringType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
))
/**
* 转化为df
*/
val df = spark.createDataFrame(rdd, structType)
df.show()
df.createOrReplaceTempView("technology")
/**
* 应用开窗函数row_number
* 注意:开窗函数只能在hiveContext下使用
*/
val result_1 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top <= 1")
result_1.show()
val result_2 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top <= 2")
result_2.show()
val result_3 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top <= 3")
result_3.show()
val result_4 = spark.sql("select id,name,age from (select id,name,age," +
"row_number() over (partition by id order by age desc) top from technology) t where t.top > 3")
result_4.show()
}
}
五.结果【不使用HiveContext】