装箱问题(Bin Packing Problem)

装箱问题即搬家公司问题。一个搬家公司有无限多的箱子,每个箱子的承重上限为W,当搬家公司进入一个房间时,所有物品都必须被装入箱子,每个物品的重量为wi (i=1,...,m),规划装箱方式,使得使用的箱子最少。此文及所有本博客中的博文均为原创,本博客不转发他人博文,特此声明。

 

实例

一个海运公司有若干货轮, 一个货轮的最大载重量4000吨, 客户货物的重量是 1020T, 1930T, 3575T, 2861T, 4221T, 1541T, 2348T, and 1170T, 问如何分配货物可以使总计需求的货轮数量(航次) 最小。

 

建模 

 

假设搬家公司带来n个箱子,且n个箱子足够装入所有物品。设0-1变量x[i][j]表示第j个物品是否被安排装入第i个箱子,0表示不装入,1表示装入。根据题意,任何物品必须被装入某个箱子中,于是有约束:

 

        sum{i=1,...,n} x[i][j] = 1 | j=1,...,m            // (1) 

 

如果箱子i有任何物品被装入,则说该箱子被打开,并设0-1变量y[i]表示箱子i是否被打开(0-表示不打开,1-表示打开)。显然目标是极小化打开箱子的数目,即:

 

       min sum{i=1,...,n} y[i]                              //(2)

 

装入箱子的物品重量和不能超过该箱子的承重,即:

    

     sum{j=1,...,m} x[i][j] <= W*y[i] | i=1,...,n   //(3)

 

上式表示当聚焦第i个箱子时,如果y[i]=0则任何x[i][j]都必须为0,亦即如果第i个箱子没有被打开,则没有物品可以装入该箱子。反之,如果y[i]=1,则装入该箱子的物品的重量和必须小于箱子的最大承重W。

 

综合(1)-(3), 装箱问题模型的核心部分如下: 

//-------------------------------------------------------
 min sum{i=1,...,n} y[i]                                               //(2)
subject to 
       sum{i=1,...,n} x[i][j] = 1 | j=1,...,m                     // (1) 
       sum{j=1,...,m} x[i][j]w[i] <= W*y[i] | i=1,...,n    //(3)
//-------------------------------------------------------
 
添加where段对模型中常量符号和变量符号的说明
//-------------------------------------------------------
where
       m,n are integers
       W is a number
       w is a set
       x[i][j] is a variable of binary|i=1,...,n;j=1,...,m
       y[i] is a variable of binary|i=1,...,n
//-------------------------------------------------------
 
E、添加数据段
 //-------------------------------------------------------
data
       W=4000
       w={1020, 1930,3575,2861,4221,1541,2348, 1170}
data_relation
       m=_$(w)        // <--  _\$(w) 函数给出集合w中的元素数。
       n=m/2           // <-- 预备箱子数取为物体数的一半。
//-------------------------------------------------------

 上面模型中,物品个数由求w中的元素数给出。预备箱子数给为物体数的一半。预备箱子数必须大于实际最优箱子数,否则问题无解。

 

CPLEX求解 

求解模型,在Leapms环境中, 首先使用load命令调入并解析模型,  而后使用"cplex" 命令调用IBMC PLEX求解器完成求解.

如果你的leapms版本不支持cplex命令,可用savemps或者savelp保存成mps或lp模型,然后再用cplex求解()。

 

Leapms>load
Current directory is "ROOT".
.........
       binpacking.leap
.........
lease input the filename:binpacking
===============================================================
:  //-------------------------------------------------------
:
:  min sum{i=1,...,n} y[i]                                    //(2)
:  subject to
:         sum{i=1,...,n} x[i][j] = 1 | j=1,...,m              // (1)
:         sum{j=1,...,m} x[i][j]w[i] <= W*y[i] | i=1,...,n    //(3)
:  where
:         m,n are integers
:         W is a number
0:         w is a set
1:         x[i][j] is a variable of binary|i=1,...,n;j=1,...,m
2:         y[i] is a variable of binary|i=1,...,n
3:  data
4:         W=4000
5:         w={1020M, 1930M, 3575M, 2861M, 4221M, 1541M, 2348M, 1170}
6:         //w={1020, 1930,3575,2861,4221,1541,2348, 1170}
7:  data_relation
8:         m=_$(w)
9:         n=m
0:  //-------------------------------------------------------
===============================================================
>end of the file.
arsing model:
D
R
V
O
C
S
End.
.................................
umber of variables=72
umber of constraints=16
.................................
Leapms>cplex
 You must have licience for Ilo Cplex, otherwise you will violate
 corresponding copyrights, continue(Y/N)?
 你必须有Ilo Cplex软件的授权才能使用此功能,否则会侵犯相应版权,
 是否继续(Y/N)?y

Tried aggregator 1 time.
MIP Presolve eliminated 1 rows and 9 columns.
MIP Presolve modified 61 coefficients.
Reduced MIP has 15 rows, 63 columns, and 119 nonzeros.
Reduced MIP has 63 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.14 ticks)
Found incumbent of value 7.000000 after 0.08 sec. (0.32 ticks)
Probing time = 0.00 sec. (0.06 ticks)
Tried aggregator 1 time.
Reduced MIP has 15 rows, 63 columns, and 119 nonzeros.
Reduced MIP has 63 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.08 ticks)
Probing time = 0.00 sec. (0.06 ticks)
Clique table members: 43.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 4 threads.
Root relaxation solution time = 0.00 sec. (0.05 ticks)

        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap

*     0+    0                            7.0000        0.0000           100.00%
*     0+    0                            4.0000        0.0000           100.00%
      0     0        2.2824     5        4.0000        2.2824        8   42.94%
*     0+    0                            3.0000        2.2824            23.92%
      0     0        cutoff              3.0000        2.2824        8   23.92%
Elapsed time = 0.20 sec. (0.72 ticks, tree = 0.00 MB, solutions = 3)

Root node processing (before b&c):
  Real time             =    0.22 sec. (0.72 ticks)
Parallel b&c, 4 threads:
  Real time             =    0.00 sec. (0.00 ticks)
  Sync time (average)   =    0.00 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.22 sec. (0.72 ticks)
Solution status = Optimal
Solution value  = 3
        x1_1=1
        x1_5=1
        x1_8=1
        x6_2=1
        x6_7=1
        x8_3=1
        x8_4=1
        x8_6=1
        y1=1
        y6=1
        y8=1

求解结果为:文件分配方案是:第一航次运送1、5、8货物;第二航次2、7货物;第三航次3、4、6货物。总计使用三个航次或三艘货轮。