dubbo提供了三种结果缓存机制:
- lru:基于最近最少使用原则删除多余缓存,保持最热的数据被缓存
- threadlocal:当前线程缓存
- jcache:可以桥接各种缓存实现
一、使用方式
1 <dubbo:reference id="demoService" check="false" interface="com.alibaba.dubbo.demo.DemoService">
2 <dubbo:method name="sayHello" timeout="60000" cache="lru"/>
3 </dubbo:reference>
添加cache配置。
注意:dubbo结果缓存有一个bug,https://github.com/alibaba/dubbo/issues/1362,当cache="xxx"配置在服务级别时,没有问题,当配置成方法级别的时候,不管怎么配置,都睡使用LruCache。
二、LRU缓存源码解析
1 /**
2 * CacheFilter
3 * 配置了cache配置才会加载CacheFilter
4 */
5 @Activate(group = {Constants.CONSUMER, Constants.PROVIDER}, value = Constants.CACHE_KEY)
6 public class CacheFilter implements Filter {
7 private CacheFactory cacheFactory;
8
9 public void setCacheFactory(CacheFactory cacheFactory) {
10 this.cacheFactory = cacheFactory;
11 }
12
13 public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
14 if (cacheFactory != null && ConfigUtils.isNotEmpty(invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.CACHE_KEY))) {
15 // 使用CacheFactory$Adaptive获取具体的CacheFactory,然后再使用具体的CacheFactory获取具体的Cache对象
16 Cache cache = cacheFactory.getCache(invoker.getUrl().addParameter(Constants.METHOD_KEY, invocation.getMethodName()));
17 if (cache != null) {
18 // 缓存对象的key为arg1,arg2,arg3,...,arg4
19 String key = StringUtils.toArgumentString(invocation.getArguments());
20 // 获取缓存value
21 Object value = cache.get(key);
22 if (value != null) {
23 return new RpcResult(value);
24 }
25 Result result = invoker.invoke(invocation);
26 // 响应结果没有exception信息,则将相应结果的值塞入缓存
27 if (!result.hasException()) {
28 cache.put(key, result.getValue());
29 }
30 return result;
31 }
32 }
33 return invoker.invoke(invocation);
34 }
35 }
从@Activate(group = {Constants.CONSUMER, Constants.PROVIDER}, value = Constants.CACHE_KEY)中我们可以看出,consumer端或provider端配置了cache="xxx",则会走该CacheFilter。
首先获取具体Cache实例:CacheFilter中的cacheFactory属性是CacheFactory$Adaptive实例。
1 public class CacheFactory$Adaptive implements com.alibaba.dubbo.cache.CacheFactory {
2 public com.alibaba.dubbo.cache.Cache getCache(com.alibaba.dubbo.common.URL arg0) {
3 if (arg0 == null) throw new IllegalArgumentException("url == null");
4 com.alibaba.dubbo.common.URL url = arg0;
5 String extName = url.getParameter("cache", "lru");
6 if (extName == null)
7 throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.cache.CacheFactory) name from url(" + url.toString() + ") use keys([cache])");
8 // 获取具体的CacheFactory
9 com.alibaba.dubbo.cache.CacheFactory extension = (com.alibaba.dubbo.cache.CacheFactory) ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.cache.CacheFactory.class).getExtension(extName);
10 // 使用具体的CacheFactory获取具体的Cache
11 return extension.getCache(arg0);
12 }
13 }
这里extName使我们配置的lru,如果不配置,默认也是lru。这里获取到的具体的CacheFactory是LruCacheFactory。
1 @SPI("lru")
2 public interface CacheFactory {
3 @Adaptive("cache")
4 Cache getCache(URL url);
5 }
6
7 public abstract class AbstractCacheFactory implements CacheFactory {
8 private final ConcurrentMap<String, Cache> caches = new ConcurrentHashMap<String, Cache>();
9
10 public Cache getCache(URL url) {
11 String key = url.toFullString();
12 Cache cache = caches.get(key);
13 if (cache == null) {
14 caches.put(key, createCache(url));
15 cache = caches.get(key);
16 }
17 return cache;
18 }
19
20 protected abstract Cache createCache(URL url);
21 }
22
23 public class LruCacheFactory extends AbstractCacheFactory {
24 protected Cache createCache(URL url) {
25 return new LruCache(url);
26 }
27 }
调用LruCacheFactory.getCache(URL url)方法,实际上调用的是其父类AbstractCacheFactory的方法。逻辑是:创建一个LruCache实例,之后存储在ConcurrentMap<String, Cache> caches中,key为url.toFullString()。
再来看LruCache的创建:
1 public interface Cache {
2 void put(Object key, Object value);
3 Object get(Object key);
4 }
5
6 public class LruCache implements Cache {
7 private final Map<Object, Object> store;
8
9 public LruCache(URL url) {
10 final int max = url.getParameter("cache.size", 1000);
11 this.store = new LRUCache<Object, Object>(max);
12 }
13
14 public void put(Object key, Object value) {
15 store.put(key, value);
16 }
17
18 public Object get(Object key) {
19 return store.get(key);
20 }
21 }
默认缓存存储的最大个数为1000个。之后创建了一个LRUCache对象。
1 public class LRUCache<K, V> extends LinkedHashMap<K, V> {
2 private static final long serialVersionUID = -5167631809472116969L;
3
4 private static final float DEFAULT_LOAD_FACTOR = 0.75f;
5
6 private static final int DEFAULT_MAX_CAPACITY = 1000;
7 private final Lock lock = new ReentrantLock();
8 private volatile int maxCapacity;
9
10 public LRUCache(int maxCapacity) {
11 /**
12 * 注意:
13 * LinkedHashMap 维护着一个运行于所有Entry的双向链表:此链表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序
14 * 而真正存储的数据结构还是其父类HashMap的那个Entry[]数组,上述的双向链表仅用于维护迭代顺序(帮助实现lru算法等)
15 *
16 * LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)
17 * 第三个参数accessOrder:false(插入顺序),true(访问顺序)
18 */
19 super(16, DEFAULT_LOAD_FACTOR, true);
20 this.maxCapacity = maxCapacity;
21 }
22
23 /**
24 * 是否需要删除最老的数据(即最近没有被访问的数据)
25 * @param eldest
26 * @return
27 */
28 @Override
29 protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
30 return size() > maxCapacity;
31 }
32
33 @Override
34 public V get(Object key) {
35 try {
36 lock.lock();
37 return super.get(key);
38 } finally {
39 lock.unlock();
40 }
41 }
42
43 @Override
44 public V put(K key, V value) {
45 try {
46 lock.lock();
47 return super.put(key, value);
48 } finally {
49 lock.unlock();
50 }
51 }
52
53 @Override
54 public V remove(Object key) {
55 try {
56 lock.lock();
57 return super.remove(key);
58 } finally {
59 lock.unlock();
60 }
61 }
62
63 @Override
64 public int size() {
65 try {
66 lock.lock();
67 return super.size();
68 } finally {
69 lock.unlock();
70 }
71 }
72 ...
73 }
注意:
- LinkedHashMap维护着一个运行于所有Entry的双向链表:此链表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序(真正存储的数据结构还是其父类HashMap的那个Entry[]数组,上述的双向链表仅用于维护迭代顺序)
- 当指定了LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)第三个参数accessOrder=true时,每次执行get(Object key)时,获取出来的Entry都会被放到尾节点,也就是说双向链表的header节点是最久以前访问的,当执行put(Object key, Object value)的时候,就执行removeEldestEntry(java.util.Map.Entry<K, V> eldest)来判断是否需要删除这个header节点。(这些是LinkedHashMap实现的,具体源码分析见 https://yikun.github.io/2015/04/02/Java-LinkedHashMap%E5%B7%A5%E4%BD%9C%E5%8E%9F%E7%90%86%E5%8F%8A%E5%AE%9E%E7%8E%B0/ http://wiki.jikexueyuan.com/project/java-collection/linkedhashmap.html)
三、ThreadLocal缓存源码解析
根据文章开头提到的bug,cache=""只能配置在服务级别。
1 <dubbo:reference id="demoService" check="false" interface="com.alibaba.dubbo.demo.DemoService" cache="threadlocal"/>
1 public class ThreadLocalCacheFactory extends AbstractCacheFactory {
2 protected Cache createCache(URL url) {
3 return new ThreadLocalCache(url);
4 }
5 }
6
7 public class ThreadLocalCache implements Cache {
8 private final ThreadLocal<Map<Object, Object>> store;
9
10 public ThreadLocalCache(URL url) {
11 this.store = new ThreadLocal<Map<Object, Object>>() {
12 @Override
13 protected Map<Object, Object> initialValue() {
14 return new HashMap<Object, Object>();
15 }
16 };
17 }
18
19 public void put(Object key, Object value) {
20 store.get().put(key, value);
21 }
22
23 public Object get(Object key) {
24 return store.get().get(key);
25 }
26 }
ThreadLocalCache的实现是HashMap。
四、JCache缓存源码解析
//TODO