Redis分布式锁相关基础可查阅——redis实现分布式锁(手写redis分布式锁)
Redisson的基本使用查阅我的另一篇博文——Redisson——分布式锁的基本应用
其实之前我在写Redis锁的使用过程中,已经是查阅了很多相关的资料,算是对redis分布式锁有了一个新的认识;在使用Riddson的过程中,Riddson已经帮开发者做了很好的封装,几乎是无侵入的帮助开发者勿略掉了分布式锁的实现问题,简单有效。由于最近比较忙,现在重新捡起来Riddson,来简单的聊一聊Riddson是怎么实现分布式锁的。
以之前写的代码为入口(reddisonClient代码就是redisson初始化实例的配置bean,参考我之前的文章)
这里以异步的加锁操作为例子
public boolean orderByProductId4(String productId) {
//redisson加锁
RLock lock = redissonClient.getLock(PRODUCT_LOCK_TITLE + productId);
Future<Boolean> res = lock.tryLockAsync(30, 10, TimeUnit.SECONDS);
//此时获取锁的行为并不会阻塞代码,可以执行其他业务逻辑
//do something......
boolean result = false;
try {
//=======================执行业务逻辑=========================
//判断是否存在该商品
if (checkExist(productId) && res.get()) {
try {
//模拟数据库操作
Thread.sleep(1000*2);
//产生订单,扣减库存
order.put(UUID.randomUUID().toString(), productId);
productStockQuantity.put(productId, productStockQuantity.get(productId) - 1);
result = true;
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//=======================业务逻辑结束=========================
} catch (Exception e) {
e.printStackTrace();
} finally {
//解锁
lock.unlock();
}
return result;
}
这段代码最上方的 lock.tryLockAsync 以及 lock.unlock() 共同完成了对业务代码的分布式锁处理,在这行代码中的业务是“分布式中请求线程安全”的,这是我自己编的一个词,没有任何的理论支持,纯个人理解。分布式锁嘛,肯定解决是分布式系统中的资源竞争问题,那请求线程安全是指怎么,我这么说是因为,实际场景中,往往是一次次的请求来抢夺资源的,如:电商活动抢购商品,在这个场景中每个参与请求的用户,再具体点就是客户端,发出了一次次的请求,到后端服务器,每一次的请求,不知道会被网关或者是负载均衡转发到哪个业务系统的实例,所以我理解是请求线程安全。废话不多说,直接开始看源码。redisson的源码注释很少,希望大家多支持一下,点个赞也行啊
锁的初始化
Redisson public RLock getLock(String name)
@Override
public RLock getLock(String name) {
return new RedissonLock(connectionManager.getCommandExecutor(), name);
}
RedissonLock(non-fair,非公平锁,本次原理解析不讨论)创建过程中,构造方法需要通过connectionManager.getCommandExecutor()传入一个命令执行器,这是一个关键,ConnectionManager实际就是管理了一些连接redis的操作。它是在配置Redisson参数之后,创建Redisson客户端的时候初始化的:
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient config() {
Config config = new Config();
config.setTransportMode(TransportMode.NIO);
config.useSingleServer().setAddress("redis://127.0.0.1:6379").setPassword("liyalong"); //可以用"rediss://"来启用SSL连接
config.setLockWatchdogTimeout(10*1000);
RedissonClient redisson = Redisson.create(config);
return redisson;
}
}
Redisson.create()
/**
* Create sync/async Redisson instance with provided config
*
* @param config for Redisson
* @return Redisson instance
*/
public static RedissonClient create(Config config) {
Redisson redisson = new Redisson(config);
if (config.isReferenceEnabled()) {
redisson.enableRedissonReferenceSupport();
}
return redisson;
}
创建Redisson对象的时候要注意了,这里构造方法是关键:
package org.redisson;
//省略导包
/**
* Main infrastructure class allows to get access
* to all Redisson objects on top of Redis server.
*
* @author Nikita Koksharov
*
*/
public class Redisson implements RedissonClient {
static {
RedissonReference.warmUp();
}
protected final QueueTransferService queueTransferService = new QueueTransferService();
protected final EvictionScheduler evictionScheduler;
protected final WriteBehindService writeBehindService;
protected final ConnectionManager connectionManager;
protected final ConcurrentMap<Class<?>, Class<?>> liveObjectClassCache = new ConcurrentHashMap<>();
protected final Config config;
protected final ConcurrentMap<String, ResponseEntry> responses = new ConcurrentHashMap<>();
protected Redisson(Config config) {
this.config = config;
Config configCopy = new Config(config);
//注意这一行
connectionManager = ConfigSupport.createConnectionManager(configCopy);
evictionScheduler = new EvictionScheduler(connectionManager.getCommandExecutor());
writeBehindService = new WriteBehindService(connectionManager.getCommandExecutor());
}
public EvictionScheduler getEvictionScheduler() {
return evictionScheduler;
}
public CommandExecutor getCommandExecutor() {
return connectionManager.getCommandExecutor();
}
public ConnectionManager getConnectionManager() {
return connectionManager;
}
//省略其他代码
}
带着初始化Redisson的配置信息,根据配置的不同Redis模式创建了对应配置参数的ConnectionManager,Redisson支持多种Redis模式:集群、云托管、单节点、哨兵模式、主从模式。
public static ConnectionManager createConnectionManager(Config configCopy) {
UUID id = UUID.randomUUID();
if (configCopy.getMasterSlaveServersConfig() != null) {
validate(configCopy.getMasterSlaveServersConfig());
return new MasterSlaveConnectionManager(configCopy.getMasterSlaveServersConfig(), configCopy, id);
} else if (configCopy.getSingleServerConfig() != null) {
validate(configCopy.getSingleServerConfig());
return new SingleConnectionManager(configCopy.getSingleServerConfig(), configCopy, id);
} else if (configCopy.getSentinelServersConfig() != null) {
validate(configCopy.getSentinelServersConfig());
return new SentinelConnectionManager(configCopy.getSentinelServersConfig(), configCopy, id);
} else if (configCopy.getClusterServersConfig() != null) {
validate(configCopy.getClusterServersConfig());
return new ClusterConnectionManager(configCopy.getClusterServersConfig(), configCopy, id);
} else if (configCopy.getReplicatedServersConfig() != null) {
validate(configCopy.getReplicatedServersConfig());
return new ReplicatedConnectionManager(configCopy.getReplicatedServersConfig(), configCopy, id);
} else if (configCopy.getConnectionManager() != null) {
return configCopy.getConnectionManager();
}else {
throw new IllegalArgumentException("server(s) address(es) not defined!");
}
}
由于我们在配置Redisson的时候,Config调用的是userSingleServer(),创建的是单节点Redisson客户端,这里我们获得的ConnectionManager就是SingleConnectionManager。
在创建SingleConnectionManager过程中,调用类其父类MasterSlaveConnectionManager的构造方法:
protected MasterSlaveConnectionManager(Config cfg, UUID id) {
this.id = id.toString();
Version.logVersion();
if (cfg.getTransportMode() == TransportMode.EPOLL) {
if (cfg.getEventLoopGroup() == null) {
this.group = new EpollEventLoopGroup(cfg.getNettyThreads(), new DefaultThreadFactory("redisson-netty"));
} else {
this.group = cfg.getEventLoopGroup();
}
this.socketChannelClass = EpollSocketChannel.class;
if (PlatformDependent.isAndroid()) {
this.resolverGroup = DefaultAddressResolverGroup.INSTANCE;
} else {
this.resolverGroup = cfg.getAddressResolverGroupFactory().create(EpollDatagramChannel.class, DnsServerAddressStreamProviders.platformDefault());
}
} else if (cfg.getTransportMode() == TransportMode.KQUEUE) {
if (cfg.getEventLoopGroup() == null) {
this.group = new KQueueEventLoopGroup(cfg.getNettyThreads(), new DefaultThreadFactory("redisson-netty"));
} else {
this.group = cfg.getEventLoopGroup();
}
this.socketChannelClass = KQueueSocketChannel.class;
if (PlatformDependent.isAndroid()) {
this.resolverGroup = DefaultAddressResolverGroup.INSTANCE;
} else {
this.resolverGroup = cfg.getAddressResolverGroupFactory().create(KQueueDatagramChannel.class, DnsServerAddressStreamProviders.platformDefault());
}
} else {
if (cfg.getEventLoopGroup() == null) {
this.group = new NioEventLoopGroup(cfg.getNettyThreads(), new DefaultThreadFactory("redisson-netty"));
} else {
this.group = cfg.getEventLoopGroup();
}
this.socketChannelClass = NioSocketChannel.class;
if (PlatformDependent.isAndroid()) {
this.resolverGroup = DefaultAddressResolverGroup.INSTANCE;
} else {
this.resolverGroup = cfg.getAddressResolverGroupFactory().create(NioDatagramChannel.class, DnsServerAddressStreamProviders.platformDefault());
}
}
if (cfg.getExecutor() == null) {
int threads = Runtime.getRuntime().availableProcessors() * 2;
if (cfg.getThreads() != 0) {
threads = cfg.getThreads();
}
executor = Executors.newFixedThreadPool(threads, new DefaultThreadFactory("redisson"));
} else {
executor = cfg.getExecutor();
}
this.cfg = cfg;
this.codec = cfg.getCodec();
//这就是创建之后getLock使用的CommadExecutor
this.commandExecutor = new CommandSyncService(this);
}
方法很长,我们只看最后一行,这里创建了之后getLock使用的CommadExecutor,这个CommadExecutor并持有了当前connectionManager,这很重要。
至此,我们已经创建好了Redis lock,注意!注意!注意!这时候还没有加锁,知识初始化了锁对象而已。初始化锁的过程暂不深入研究,大致了解一下。
获取锁
顺着代码lock.tryLockAsync一路走,找到RedissonLock的tryLockAsync方法:
@Override
public RFuture<Boolean> tryLockAsync(long waitTime, long leaseTime, TimeUnit unit,
long currentThreadId) {
//Redisson首先创建了Rpromise,Rpromise继承了java Future接口
RPromise<Boolean> result = new RedissonPromise<Boolean>();
//把加锁的等待时间使用AtomicLong代替,AtomicLong是对lang的原子操作类,具体信息自行了解
AtomicLong time = new AtomicLong(unit.toMillis(waitTime));
long currentTime = System.currentTimeMillis();
RFuture<Long> ttlFuture = tryAcquireAsync(waitTime, leaseTime, unit, currentThreadId);
//以下是对future结果的回调,暂不做详解
ttlFuture.onComplete((ttl, e) -> {
if (e != null) {
result.tryFailure(e);
return;
}
// lock acquired
if (ttl == null) {
if (!result.trySuccess(true)) {
unlockAsync(currentThreadId);
}
return;
}
long el = System.currentTimeMillis() - currentTime;
time.addAndGet(-el);
if (time.get() <= 0) {
trySuccessFalse(currentThreadId, result);
return;
}
long current = System.currentTimeMillis();
AtomicReference<Timeout> futureRef = new AtomicReference<Timeout>();
RFuture<RedissonLockEntry> subscribeFuture = subscribe(currentThreadId);
subscribeFuture.onComplete((r, ex) -> {
if (ex != null) {
result.tryFailure(ex);
return;
}
if (futureRef.get() != null) {
futureRef.get().cancel();
}
long elapsed = System.currentTimeMillis() - current;
time.addAndGet(-elapsed);
tryLockAsync(time, waitTime, leaseTime, unit, subscribeFuture, result, currentThreadId);
});
if (!subscribeFuture.isDone()) {
Timeout scheduledFuture = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
@Override
public void run(Timeout timeout) throws Exception {
if (!subscribeFuture.isDone()) {
subscribeFuture.cancel(false);
trySuccessFalse(currentThreadId, result);
}
}
}, time.get(), TimeUnit.MILLISECONDS);
futureRef.set(scheduledFuture);
}
});
return result;
}
首先关注这行代码:
RFuture<Long> ttlFuture = tryAcquireAsync(waitTime, leaseTime, unit, currentThreadId);
再debug一层
private <T> RFuture<Long> tryAcquireAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId) {
//如果设置了自动解锁时间走这里
if (leaseTime != -1) {
return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}
//如果没有设置自动解锁时间走这里
RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
if (e != null) {
return;
}
// lock acquired
if (ttlRemaining == null) {
scheduleExpirationRenewal(threadId);
}
});
return ttlRemainingFuture;
}
在这里会判断开发者有没有设置锁的超时时间,如果没有设置会通过Redisson初始化过程中的命令执行器获取默认配置30秒:private long lockWatchdogTimeout = 30 * 1000;
感觉30秒好长啊,大家使用的时候还是根据业务实际情况设置一下吧,感觉大多数场景都用不到30秒
Warning!!!核心代码要来了
<T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
internalLockLeaseTime = unit.toMillis(leaseTime);
return evalWriteAsync(getName(), LongCodec.INSTANCE, command,
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"return redis.call('pttl', KEYS[1]);",
Collections.singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
}
在这里第一行首先会设置一下开发者设定的锁超时间,下面就直接return了一堆东西,这个字符串是啥鸭???
开始我也愣了一下,后来我Ctrl+Q了一下evalWriteAsync方法看了一下参数列表:
这参数名,就是脚本呗,我就顺手google了一下 redis 脚本,原来这就是操作redis的 Lua jio本......
顺手我就又学了一下Lua脚本,暂时先不谈Lua脚本本身,先说一下Lua脚本对于redis操作的意义,那就是原子性啊,将一系列的操作,在一个Lua脚本内编写,一并 提交给redis执行,由于redis本就是单线程的原因,保证了这段脚本执行的原子性,要么这一些列操作全部成功,要么一起失败。
redis不是有自己的事务嘛,为什么用Lua???
Lua方便比那个东西方便多了。
这段脚本如下
if
(redis.call('exists', KEYS[1]) == 0)
then
redis.call('hincrby', KEYS[1], ARGV[2], 1);
redis.call('pexpire', KEYS[1], ARGV[1]);
return nil;
end;
if
(redis.call('hexists', KEYS[1], ARGV[2]) == 1)
then
redis.call('hincrby', KEYS[1], ARGV[2], 1);
redis.call('pexpire', KEYS[1], ARGV[1]);
return nil;
end;
return redis.call('pttl', KEYS[1]);
这个KEYS[1]就是我们设置的分布式锁的key
大致逻辑如下:
- 首先判断redis中是否存在这个key
- 如果不存在就使用hset设置这个key对应的value——ARGV[2]为1,然后设置这个key的超时时间——ARGV[1](顺带提一下hset适合存储对象,所以可得知redisson分布式锁存的是一个对象在redis中)
- 如果存在,就是重入锁的操作了
- 最后返回这个key的剩余存活时间(pttl以毫秒为单位返回 key 的剩余生存时间)
详细说明一下这个重入锁操作干了什么:
hincrby:增加 key
指定的哈希集中指定字段的数值。如果 key
不存在,会创建一个新的哈希集并与 key
关联。如果字段不存在,则字段的值在该操作执行前被设置为 0,HINCRBY
支持的值的范围限定在 64位 有符号整数
返回值:增值操作执行后的该字段的值
使用举栗:
redis> HSET myhash field 5
(integer) 1
redis> HINCRBY myhash field 1
(integer) 6
redis> HINCRBY myhash field -1
(integer) 5
redis> HINCRBY myhash field -10
(integer) -5
redis>
也就是说如果这个key存在,则将ARGV[2] 增加 1(实现可重入锁,同一个线程多次tryLock,每次加1,每次releaseLock就-1,当被减为0的时候,就代表该线程完全释放掉锁)
然后重置这个key的超时时间为ARGV[1]
继续往下:
protected <T> RFuture<T> evalWriteAsync(String key, Codec codec, RedisCommand<T> evalCommandType, String script, List<Object> keys, Object... params) {
//根据当前的CommandSyncService替换成CommandBatchService
CommandBatchService executorService = createCommandBatchService();
RFuture<T> result = executorService.evalWriteAsync(key, codec, evalCommandType, script, keys, params);
if (!(commandExecutor instanceof CommandBatchService)) {
executorService.executeAsync();
}
return result;
}
如下方法实现了CommandSyncService替换成CommandBatchService
private CommandBatchService createCommandBatchService() {
//如果当前命令执行器是CommandBatchService就直接强转返回了
if (commandExecutor instanceof CommandBatchService) {
return (CommandBatchService) commandExecutor;
}
//如果不是CommandBatchService,将自己的配置信息提供出来,用于创建CommandBatchService
MasterSlaveEntry entry = commandExecutor.getConnectionManager().getEntry(getName());
BatchOptions options = BatchOptions.defaults()
.syncSlaves(entry.getAvailableSlaves(), 1, TimeUnit.SECONDS);
return new CommandBatchService(commandExecutor.getConnectionManager(), options);
}
创建的CommandBatchService如下
很明显,配置信息确实移交了,同时我发现了NioEventLoopGroup!!!看来redisson的底层是用了Netty啊,了解过网络编程的读者应该是知道Netty是干什么的,它在网络编程中多么重要我也不阐述了,这个东西暂时不谈,谈也谈不完,Netty的相关资料可以参考的我专栏
- Netty从零到必须学会
- Netty源码分析
继续跟代码:
@Override
public <T, R> RFuture<R> evalWriteAsync(String key, Codec codec, RedisCommand<T> evalCommandType, String script, List<Object> keys, Object... params) {
NodeSource source = getNodeSource(key);
return evalAsync(source, false, codec, evalCommandType, script, keys, params);
}
继续跟......执行脚本的关键代码来了
private <T, R> RFuture<R> evalAsync(NodeSource nodeSource, boolean readOnlyMode, Codec codec, RedisCommand<T> evalCommandType, String script, List<Object> keys, Object... params) {
//这里的isEvalCacheActive始终是false,所以只有当evalCommandType.getName().equals("EVAL")不成立的时候才会进入下面的代码,暂时先不解释直接跳过
if (isEvalCacheActive() && evalCommandType.getName().equals("EVAL")) {
RPromise<R> mainPromise = new RedissonPromise<R>();
Object[] pps = copy(params);
RPromise<R> promise = new RedissonPromise<R>();
String sha1 = calcSHA(script);
RedisCommand cmd = new RedisCommand(evalCommandType, "EVALSHA");
List<Object> args = new ArrayList<Object>(2 + keys.size() + params.length);
args.add(sha1);
args.add(keys.size());
args.addAll(keys);
args.addAll(Arrays.asList(params));
RedisExecutor<T, R> executor = new RedisExecutor<>(readOnlyMode, nodeSource, codec, cmd,
args.toArray(), promise, false, connectionManager, objectBuilder);
executor.execute();
promise.onComplete((res, e) -> {
if (e != null) {
if (e.getMessage().startsWith("NOSCRIPT")) {
RFuture<String> loadFuture = loadScript(executor.getRedisClient(), script);
loadFuture.onComplete((r, ex) -> {
if (ex != null) {
free(pps);
mainPromise.tryFailure(ex);
return;
}
RedisCommand command = new RedisCommand(evalCommandType, "EVALSHA");
List<Object> newargs = new ArrayList<Object>(2 + keys.size() + params.length);
newargs.add(sha1);
newargs.add(keys.size());
newargs.addAll(keys);
newargs.addAll(Arrays.asList(pps));
NodeSource ns = nodeSource;
if (ns.getRedisClient() == null) {
ns = new NodeSource(nodeSource, executor.getRedisClient());
}
async(readOnlyMode, ns, codec, command, newargs.toArray(), mainPromise, false);
});
} else {
free(pps);
mainPromise.tryFailure(e);
}
return;
}
free(pps);
mainPromise.trySuccess(res);
});
return mainPromise;
}
RPromise<R> mainPromise = createPromise();
List<Object> args = new ArrayList<Object>(2 + keys.size() + params.length);
args.add(script);
args.add(keys.size());
args.addAll(keys);
args.addAll(Arrays.asList(params));
async(readOnlyMode, nodeSource, codec, evalCommandType, args.toArray(), mainPromise, false);
return mainPromise;
}
所以暂时的焦点在如下代码:
RPromise<R> mainPromise = createPromise();
List<Object> args = new ArrayList<Object>(2 + keys.size() + params.length);
args.add(script);
args.add(keys.size());
args.addAll(keys);
args.addAll(Arrays.asList(params));
async(readOnlyMode, nodeSource, codec, evalCommandType, args.toArray(), mainPromise, false);
return mainPromise;
这里将脚本、key数量、key数组以及参数放入了一个list,其中这个参数中至少包括了锁的超时时间 和 当前connectionManager的id+当前线程的id的字符串。
继续跟进......调用到了CommandBatchService的async方法
@Override
public <V, R> void async(boolean readOnlyMode, NodeSource nodeSource,
Codec codec, RedisCommand<V> command, Object[] params, RPromise<R> mainPromise, boolean ignoreRedirect) {
//判断当前的操作类型是否是REDIS_READ_ATOMIC或者是REDIS_WRITE_ATOMIC
if (isRedisBasedQueue()) {
//下面判断当前是否是只读操作
boolean isReadOnly = options.getExecutionMode() == ExecutionMode.REDIS_READ_ATOMIC;
RedisExecutor<V, R> executor = new RedisQueuedBatchExecutor<>(isReadOnly, nodeSource, codec, command, params, mainPromise,
false, connectionManager, objectBuilder, commands, connections, options, index, executed, semaphore);
executor.execute();
} else {
//很显然我们获取分布式锁是读写操作,走这一步
RedisExecutor<V, R> executor = new RedisBatchExecutor<>(readOnlyMode, nodeSource, codec, command, params, mainPromise,
false, connectionManager, objectBuilder, commands, options, index, executed);
executor.execute();
}
}
现在看一下这个RedisBatchExecutor是什么来头
有点尴尬,我本以为和java.util.concurrent.ExecutorService有关系,我大意了QaQ,看来只能读一读了,本来还想偷个懒~~~
烦的eb,除了最上面的软件法律声明,真就没有注释呗!全靠类名想象呗~~~
实际上这里只是再一次的组织了相关参数
public class RedisBatchExecutor<V, R> extends BaseRedisBatchExecutor<V, R> {
@SuppressWarnings("ParameterNumber")
public RedisBatchExecutor(boolean readOnlyMode, NodeSource source, Codec codec, RedisCommand<V> command,
Object[] params, RPromise<R> mainPromise, boolean ignoreRedirect, ConnectionManager connectionManager,
RedissonObjectBuilder objectBuilder, ConcurrentMap<MasterSlaveEntry, Entry> commands,
BatchOptions options, AtomicInteger index,
AtomicBoolean executed) {
super(readOnlyMode, source, codec, command, params, mainPromise, ignoreRedirect, connectionManager, objectBuilder,
commands, options, index, executed);
}
@Override
public void execute() {
//父类的方法
addBatchCommandData(params);
}
}
protected final void addBatchCommandData(Object[] batchParams) {
MasterSlaveEntry msEntry = getEntry(source);
Entry entry = commands.get(msEntry);
if (entry == null) {
entry = new Entry();
Entry oldEntry = commands.putIfAbsent(msEntry, entry);
if (oldEntry != null) {
entry = oldEntry;
}
}
if (!readOnlyMode) {
entry.setReadOnlyMode(false);
}
Codec codecToUse = getCodec(codec);
BatchCommandData<V, R> commandData = new BatchCommandData<V, R>(mainPromise, codecToUse, command, batchParams, index.incrementAndGet());
entry.getCommands().add(commandData);
}
执行结束之后,我们往回看!!!回到RedissonLock的evalWriteAsync方法,我再复制到下面一次
protected <T> RFuture<T> evalWriteAsync(String key, Codec codec, RedisCommand<T> evalCommandType, String script, List<Object> keys, Object... params) {
CommandBatchService executorService = createCommandBatchService();
RFuture<T> result = executorService.evalWriteAsync(key, codec, evalCommandType, script, keys, params);
//要开始执行redis操作了
if (!(commandExecutor instanceof CommandBatchService)) {
executorService.executeAsync();
}
return result;
}
刚才分析过,这里的executorService才是真正做执行redis操作的对象
此时的commands对象如下:
以下代码我修剪过,删了不重要的部分
public RFuture<BatchResult<?>> executeAsync() {
//判断是否执行过,难道还有什么可能在其他地方执行过的嘛?暂时不纠结
if (executed.get()) {
throw new IllegalStateException("Batch already executed!");
}
//判断是否是IN_MEMORY模式,默认情况下是IN_MEMORY,所以不走这个分支
if (this.options.getExecutionMode() != ExecutionMode.IN_MEMORY) {
for (Entry entry : commands.values()) {
BatchCommandData<?, ?> multiCommand = new BatchCommandData(RedisCommands.MULTI, new Object[] {}, index.incrementAndGet());
entry.getCommands().addFirst(multiCommand);
BatchCommandData<?, ?> execCommand = new BatchCommandData(RedisCommands.EXEC, new Object[] {}, index.incrementAndGet());
entry.getCommands().add(execCommand);
}
}
RPromise<BatchResult<?>> promise = new RedissonPromise<>();
RPromise<Void> voidPromise = new RedissonPromise<Void>();
//以下是设置Future回调相关的操作
if (this.options.isSkipResult()
&& this.options.getSyncSlaves() == 0) {
voidPromise.onComplete((res, ex) -> {
executed.set(true);
if (ex != null) {
for (Entry e : commands.values()) {
e.getCommands().forEach(t -> t.tryFailure(ex));
}
promise.tryFailure(ex);
commands.clear();
nestedServices.clear();
return;
}
commands.clear();
nestedServices.clear();
promise.trySuccess(new BatchResult<>(Collections.emptyList(), 0));
});
} else {
voidPromise.onComplete((res, ex) -> {
executed.set(true);
if (ex != null) {
for (Entry e : commands.values()) {
e.getCommands().forEach(t -> t.tryFailure(ex));
}
promise.tryFailure(ex);
commands.clear();
nestedServices.clear();
return;
}
List<BatchCommandData> entries = new ArrayList<BatchCommandData>();
for (Entry e : commands.values()) {
entries.addAll(e.getCommands());
}
Collections.sort(entries);
List<Object> responses = new ArrayList<Object>(entries.size());
int syncedSlaves = 0;
for (BatchCommandData<?, ?> commandEntry : entries) {
if (isWaitCommand(commandEntry)) {
syncedSlaves = (Integer) commandEntry.getPromise().getNow();
} else if (!commandEntry.getCommand().getName().equals(RedisCommands.MULTI.getName())
&& !commandEntry.getCommand().getName().equals(RedisCommands.EXEC.getName())
&& !this.options.isSkipResult()) {
if (commandEntry.getPromise().isCancelled()) {
continue;
}
Object entryResult = commandEntry.getPromise().getNow();
try {
entryResult = RedisExecutor.tryHandleReference(objectBuilder, entryResult);
} catch (ReflectiveOperationException exc) {
log.error("Unable to handle reference from " + entryResult, exc);
}
responses.add(entryResult);
}
}
BatchResult<Object> result = new BatchResult<Object>(responses, syncedSlaves);
promise.trySuccess(result);
commands.clear();
nestedServices.clear();
});
}
AtomicInteger slots = new AtomicInteger(commands.size());
for (Map.Entry<RFuture<?>, List<CommandBatchService>> entry : nestedServices.entrySet()) {
slots.incrementAndGet();
for (CommandBatchService service : entry.getValue()) {
service.executeAsync();
}
entry.getKey().onComplete((res, e) -> {
handle(voidPromise, slots, entry.getKey());
});
}
for (Map.Entry<MasterSlaveEntry, Entry> e : commands.entrySet()) {
RedisCommonBatchExecutor executor = new RedisCommonBatchExecutor(new NodeSource(e.getKey()), voidPromise,
connectionManager, this.options, e.getValue(), slots);
executor.execute();
}
return promise;
}
带着脚本和参数的commands终于要执行了
循环遍历每一个待执行的命令对象,开始使用RedisCommonBatchExecutor执行。创建并通过构造方法设置好RedisCommonBatchExecutor之后
public void execute() {
if (mainPromise.isCancelled()) {
free();
return;
}
if (!connectionManager.getShutdownLatch().acquire()) {
free();
mainPromise.tryFailure(new RedissonShutdownException("Redisson is shutdown"));
return;
}
codec = getCodec(codec);
//获取redis连接
RFuture<RedisConnection> connectionFuture = getConnection();
RPromise<R> attemptPromise = new RedissonPromise<R>();
mainPromiseListener = (r, e) -> {
if (mainPromise.isCancelled() && connectionFuture.cancel(false)) {
log.debug("Connection obtaining canceled for {}", command);
timeout.cancel();
if (attemptPromise.cancel(false)) {
free();
}
}
};
if (attempt == 0) {
mainPromise.onComplete((r, e) -> {
if (this.mainPromiseListener != null) {
this.mainPromiseListener.accept(r, e);
}
});
}
//按照某个时间间隔刷新超时时间的定时任务,这就是redisson的看门狗,这个很重要
scheduleRetryTimeout(connectionFuture, attemptPromise);
connectionFuture.onComplete((connection, e) -> {
if (connectionFuture.isCancelled()) {
connectionManager.getShutdownLatch().release();
return;
}
if (!connectionFuture.isSuccess()) {
connectionManager.getShutdownLatch().release();
exception = convertException(connectionFuture);
return;
}
//发送命令到redis
sendCommand(attemptPromise, connection);
//发送数据之后添加监听器
writeFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
checkWriteFuture(writeFuture, attemptPromise, connection);
}
});
releaseConnection(attemptPromise, connectionFuture);
});
attemptPromise.onComplete((r, e) -> {
checkAttemptPromise(attemptPromise, connectionFuture);
});
}
发送命令到redis的代码
@Override
protected void sendCommand(RPromise<Void> attemptPromise, RedisConnection connection) {
boolean isAtomic = options.getExecutionMode() != ExecutionMode.IN_MEMORY;
boolean isQueued = options.getExecutionMode() == ExecutionMode.REDIS_READ_ATOMIC
|| options.getExecutionMode() == ExecutionMode.REDIS_WRITE_ATOMIC;
List<CommandData<?, ?>> list = new ArrayList<>(entry.getCommands().size());
if (source.getRedirect() == Redirect.ASK) {
RPromise<Void> promise = new RedissonPromise<Void>();
list.add(new CommandData<Void, Void>(promise, StringCodec.INSTANCE, RedisCommands.ASKING, new Object[] {}));
}
//遍历所有的执行命令并添加到list集合
for (CommandData<?, ?> c : entry.getCommands()) {
if ((c.getPromise().isCancelled() || c.getPromise().isSuccess())
&& !isWaitCommand(c)
&& !isAtomic) {
// skip command
continue;
}
list.add(c);
}
if (list.isEmpty()) {
writeFuture = connection.getChannel().newPromise();
attemptPromise.trySuccess(null);
timeout.cancel();
return;
}
//调用连接对象的发送方法
writeFuture = connection.send(new CommandsData(attemptPromise, list, options.isSkipResult(), isAtomic, isQueued, options.getSyncSlaves() > 0));
}
使用Netty发送命令到redis
RedisConnection:
public ChannelFuture send(CommandsData data) {
return channel.writeAndFlush(data);
}
看到这里,很明显嘛,channel的writeAndFlush就是Netty的操作
之后的执行结果都是异步返回
再继续执行,回到RedisCommonBatchExecutor的execute方法,向这个ChannelFuture添加监听器
writeFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
checkWriteFuture(writeFuture, attemptPromise, connection);
}
});
最后释放连接
releaseConnection(attemptPromise, connectionFuture);
到此不再分析,看到Netty就知道这个异步加锁操作的的结果,是通过监听器来实现的
释放锁
RedissonLock
@Override
public RFuture<Void> unlockAsync(long threadId) {
RPromise<Void> result = new RedissonPromise<Void>();
//通过lua脚本去redis删除key,或者说是直接让key过期,基本和加锁的执行流程相同
RFuture<Boolean> future = unlockInnerAsync(threadId);
future.onComplete((opStatus, e) -> {
//移除给redis中锁续期的定时任务
cancelExpirationRenewal(threadId);
if (e != null) {
result.tryFailure(e);
return;
}
if (opStatus == null) {
IllegalMonitorStateException cause = new IllegalMonitorStateException("attempt to unlock lock, not locked by current thread by node id: "
+ id + " thread-id: " + threadId);
result.tryFailure(cause);
return;
}
result.trySuccess(null);
});
return result;
}
实际释放锁代码
protected RFuture<Boolean> unlockInnerAsync(long threadId) {
return evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
"local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
"if (counter > 0) then " +
"redis.call('pexpire', KEYS[1], ARGV[2]); " +
"return 0; " +
"else " +
"redis.call('del', KEYS[1]); " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; " +
"end; " +
"return nil;",
Arrays.asList(getName(), getChannelName()), LockPubSub.UNLOCK_MESSAGE, internalLockLeaseTime, getLockName(threadId));
}
总结
其实我这里可以不用异步的加锁来研究源码,但是我了解到Redisson底层是使用了Netty,还是向看看Redisson是怎么玩的
通常情况下使用redisson分布式锁只需记住如下几点:
- redisson使用lua脚本执行操作redis保证了原子性
- redisson会在加锁成功之后添加一个定时任务,在业务代码没有之前完成释放锁之前,为该分布式锁续期,这就是Redisson所说的看门狗