clone() 与 detach() 对比

Torch 为了提高速度,向量或是矩阵的赋值是指向同一内存的,这不同于 Matlab。如果需要保存旧的tensor即需要开辟新的存储地址而不是引用,可以用 clone() 进行深拷贝
首先我们来打印出来clone()操作后的数据类型定义变化:
(1). 简单打印类型

import torch

a = torch.tensor(1.0, requires_grad=True)
b = a.clone()
c = a.detach()
a.data *= 3
b += 1

print(a)   # tensor(3., requires_grad=True)
print(b)
print(c)

'''
输出结果:
tensor(3., requires_grad=True)
tensor(2., grad_fn=<AddBackward0>)
tensor(3.)      # detach()后的值随着a的变化出现变化
'''

grad_fn=<CloneBackward>,表示clone后的返回值是个中间变量,因此支持梯度的回溯。clone操作在一定程度上可以视为是一个identity-mapping函数。
detach()操作后的tensor与原始tensor共享数据内存,当原始tensor在计算图中数值发生反向传播等更新之后,detach()的tensor值也发生了改变
注意: 在pytorch中我们不要直接使用id是否相等来判断tensor是否共享内存,这只是充分条件,因为也许底层共享数据内存,但是仍然是新的tensor,比如detach(),如果我们直接打印id会出现以下情况。

import torch as t
a = t.tensor([1.0,2.0], requires_grad=True)
b = a.detach()
#c[:] = a.detach()
print(id(a))
print(id(b))
#140568935450520
140570337203616

显然直接打印出来的id不等,我们可以通过简单的赋值后观察数据变化进行判断。

(2). clone()的梯度回传
detach()函数可以返回一个完全相同的tensor,与旧的tensor共享内存,脱离计算图,不会牵扯梯度计算。
而clone充当中间变量,会将梯度传给源张量进行叠加,但是本身不保存其grad,即值为None

import torch
a = torch.tensor(1.0, requires_grad=True)
a_ = a.clone()
y = a**2
z = a ** 2+a_ * 3
y.backward()
print(a.grad)   # 2
z.backward()
print(a_.grad)   # None. 中间variable,无grad
print(a.grad)   
'''
输出:
tensor(2.) 
None
tensor(7.) # 2*2+3=7
'''

使用torch.clone()获得的新tensor和原来的数据不再共享内存,但仍保留在计算图中,clone操作在不共享数据内存的同时支持梯度梯度传递与叠加,所以常用在神经网络中某个单元需要重复使用的场景下。
通常如果原tensor的requires_grad=True,则:

  • clone()操作后的tensor requires_grad=True
  • detach()操作后的tensor requires_grad=False。
import torch
torch.manual_seed(0)

x= torch.tensor([1., 2.], requires_grad=True)
clone_x = x.clone() 
detach_x = x.detach()
clone_detach_x = x.clone().detach() 

f = torch.nn.Linear(2, 1)
y = f(x)
y.backward()

print(x.grad)
print(clone_x.requires_grad)
print(clone_x.grad)
print(detach_x.requires_grad)
print(clone_detach_x.requires_grad)
'''
输出结果如下:
tensor([-0.0053,  0.3793])
True
None
False
False
'''

另一个比较特殊的是当源张量的 require_grad=False,clone后的张量 require_grad=True,此时不存在张量回传现象,可以得到clone后的张量求导。
如下:

import torch
a = torch.tensor(1.0)
a_ = a.clone()
a_.requires_grad_() #require_grad=True
y = a_ ** 2
y.backward()
print(a.grad)   # None
print(a_.grad) 
'''
输出:
None
tensor(2.)
'''

了解了两者的区别后我们常与其他函数进行搭配使用,实现数据拷贝后的其他需要。
比如我们经常使用view()函数对tensor进行reshape操作。返回的新Tensor与源Tensor可能有不同的size,但是是共享data的,即其中的一个发生变化,另外一个也会跟着改变。
需要注意的是view返回的Tensor与源Tensor是共享data的但是依然是一个新的Tensor(因为Tensor除了包含data外还有一些其他属性),两者id(内存地址)并不一致。

x = torch.rand(2, 2)
y = x.view(4)
x += 1
print(x)
print(y) # 也加了1

view() 仅仅是改变了对这个张量的观察角度,内部数据并未改变。这时候想返回一个真正新的副本(即不共享data内存)该怎么办呢?Pytorch还提供了一个reshape()可以改变形状,但是此函数并不能保证返回的是其拷贝,所以不推荐使用。推荐先用clone创造一个副本然后再使用view。参考此处

x = torch.rand(2, 2)
x_cp = x.clone().view(4)
x += 1
print(id(x))
print(id(x_cp))
print(x)
print(x_cp)
'''
140568935036464
140568935035816
tensor([[0.4963, 0.7682],
        [0.1320, 0.3074]])
tensor([[1.4963, 1.7682, 1.1320, 1.3074]])      
'''

另外使用clone()会被记录在计算图中,即梯度回传到副本时也会传到源Tensor。

总结:

  • torch.detach() — 新的tensor会脱离计算图,不会牵扯梯度计算
  • torch.clone() — 新的tensor充当中间变量,会保留在计算图中,参与梯度计算(回传叠加),但是一般不会保留自身梯度。
    原地操作(in-place, such as resize_ / resize_as_ / set_ / transpose_) 在上面两者中执行都会引发错误或者警告。
  • 共享数据内存是底层设计,并不能简单的通过直接打印tensor的id地址进行判断,需要在进行赋值或运算操作后打印比较数据的变化进行判断。
  • 复制操作可以根据实际需要进行结合使用。

引用官方文档的话:如果你使用了in-place operation而没有报错的话,那么你可以确定你的梯度计算是正确的。另外尽量避免in-place的使用。
像y = x + y这样的运算会新开内存,然后将y指向新内存。我们可以使用Python自带的id函数进行验证:如果两个实例的ID相同,则它们所对应的内存地址相同。