注意阈值类型表的介绍:
cv2.THRESH_BINARY
cv2.THRESH_BINARY_INV
cv2.THRESH_TRUNC
cv2.THRESH_TOZERO
cv2.THRESH_TOZERO_INV
单个图片处理:
import cv2
img = cv2.imread("166dian.jpg")
print(img)
# 先进行灰度化处理,再进行二值化
Grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 127是二值化阈值,大于255的像素值都置为0
ret, thresh = cv2.threshold(Grayimg, 127, 255, cv2.THRESH_BINARY)
cv2.imwrite('166dian1.jpg', thresh)
输入一个输出六个结果:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread('166dian.jpg')
# 中值滤波
# img = cv2.medianBlur(img, 5)
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh1=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3=cv2.threshold(GrayImage,127,255,cv2.THRESH_TRUNC)
ret,thresh4=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO)
ret,thresh5=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO_INV)
titles = ['Gray Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [GrayImage, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray') #两行,三列,序号 出图
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
某文件夹中图片批量处理:
注意:
1.路径最好要全英文
2. 根据原文稍微改动
import os
import cv2
from PIL import Image
def binarization():
# 获取目录下所有图片名
filename = os.listdir(r"F:\lianxi\lianxi\py\input")#F:\python_Demo\DeepLearning\tools3\shapes\cmutestGT
print(filename)
# os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表。
base_dir = r"F:\lianxi\lianxi\py\input" # input
new_dir = r"F:\lianxi\lianxi\py\output" # output
for img in filename:
name = img
path1 = os.path.join(base_dir, img)
print(name)
img = cv2.imread(path1)
#print(img)
Grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(Grayimg, 127, 255, cv2.THRESH_BINARY)
cv2.imwrite('name.jpg', thresh)
image = Image.open('name.jpg')
# 有需要可对图像进行大小调整
# image = image.resize((350, 350),Image.ANTIALIAS)
path = os.path.join(new_dir, name)
image.save(path)
binarization()