自学笔记

课程老师:刘二大人 河北工业大学教师 https://liuii.github.io
课程来源:https://www.bilibili.com/video/BV1Y7411d7Ys

十一、Implementation_of_Inception_Module

先看一下Inception_Module模块的图,课上老师按照下面的图进行的类的构建,然后封装,码代码时,是按照图中标注的分支1—4依次进行。其实构建四个分支的顺序可以随意调换,四个分支是平行的。

pytorch的lenet5改进 pytorch encoding_python

Inception_Module模块图

先构建Inception_Module类的代码,结合上图以及注释进行理解

#创建模型块,因为这个块在整个神经网络中经常使用,且不是基础的单层
#所以将其组合到一起,减少代码的重复性工作
class InceptionA(nn.Module):
    def __init__(self,in_channels):
        #使其能继承父类的属性,不明白的可以再看看python的类继承
        super(InceptionA,self).__init__()
        #结合老师课上给的模型图,这个网络分为了四个分支,下面逐一初始化
        
        #分支1:1*1卷积层
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)

        #分支2:1*1卷积层 --> 5*5的卷积层
        self.branch5x5_1 = nn.Conv2d(in_channels,16, kernel_size=1)
        #5*5的卷积层中,padding为2,保持了卷积后图片尺寸不变
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)

        #分支3:1*1卷积层 --> 3*3卷积层 --> 3*3卷积层
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        #两个3*3的卷积层,padding为1,同样保持了卷积后图片尺寸不变
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)

        #分支4:平均池化层 --> 1*1卷积,池化层在后面的forward中体现
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        #分支1
        branch1x1 = self.branch1x1(x)

        #分支2
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        #分支3
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        #分支4,进行了池化层后,接了1*1卷积层
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        #将四层的输出结果按层进行合并。前面所有做的变换保证了每层的输出尺寸是一样大的,所以可以进行合并。
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)

接下来进行Net的构建

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        #初始化所需的卷积层
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)

        #初始化所需的InceptionA(nn.Module)
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        #初始化所需的最大池化层与线性层(fc即Fully_Connected,全连接)
        self.mp = nn.MaxPool2d(2)

        #这里老师教了一个偷懒的方法,线性层的输入大小(即下面的线性层输入1408)让系统自动计算
        #方法:将下行代码注释掉,再在forward中输出对应位置的x.size(1)
        self.fc = nn.Linear(1408, 10)

    def forward(self, x):
        #获取输入x的尺寸,这里即batch_size的大小
        in_size = x.size(0)

        #卷积-->池化-->relu
        x = F.relu(self.mp(self.conv1(x)))

        #经过第一个InceptionA模块
        x = self.incep1(x)

        #卷积-->池化-->relu
        x = F.relu(self.mp(self.conv2(x)))

        #经过第二个InceptionA模块
        x = self.incep2(x)

        #变形成 in_size 行,列自动变换
        x = x.view(in_size, -1)

        #如果想让程序自动计算出1408,将下方的代码(#print(x.size(1)))解除注释
        #并注释它的下一行:x = self.fc(x),其它地方不变,整个代码跑一次,
        #就能得到x.size(1),就是需要的全连接(线性层)的输入大小
        #print(x.size(1))
        x = self.fc(x)
        return x

整个代码如下:

#仅模型部分做了改变,其它部分和前面的代码一致
#导入相应的包
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn

#小训练集大小
batch_size = 64

#数据集的处理
#图片变换:转换成Tensor,标准化
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.1307,),(0.3081,))])
#创建训练数据集
train_dataset = datasets.MNIST(root='../dataset/mnist/',
                               train=True, download=True,
                               transform=transform)
#导入训练数据集
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
#创建测试数据集
test_dataset = datasets.MNIST(root='../dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
#导入测试数据集
test_loader = DataLoader(test_dataset,
                          shuffle=False,
                          batch_size=batch_size)

#创建模型块,因为这个块在整个神经网络中经常使用,且不是基础的单层
#所以将其组合到一起,减少代码的重复性工作
class InceptionA(nn.Module):
    def __init__(self,in_channels):
        #使其能继承父类的属性,不明白的可以再看看python的类继承
        super(InceptionA,self).__init__()
        #结合老师课上给的模型图,这个网络分为了四个分支,下面逐一初始化
        #分支1:1*1卷积层
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)

        #分支2:1*1卷积层 --> 5*5的卷积层
        self.branch5x5_1 = nn.Conv2d(in_channels,16, kernel_size=1)
        #5*5的卷积层中,padding为2,保持了卷积后图片尺寸不变
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)

        #分支3:1*1卷积层 --> 3*3卷积层 --> 3*3卷积层
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        #两个3*3的卷积层,padding为1,同样保持了卷积后图片尺寸不变
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)

        #分支4:平均池化层 --> 1*1卷积,池化层在后面的forward中体现
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        #分支1
        branch1x1 = self.branch1x1(x)

        #分支2
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        #分支3
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        #分支4,进行了池化层后,接了1*1卷积层
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        #将四层的输出结果按层进行合并
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)

#设计总的模型,就可以直接调用上面的InceptionA(nn.Module)类
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        #初始化所需的卷积层
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)

        #初始化所需的InceptionA(nn.Module)
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        #初始化所需的最大池化层与线性层(fc即Fully_Connected,全连接)
        self.mp = nn.MaxPool2d(2)

        #这里老师教了一个偷懒的方法,线性层的输入大小(即下面的线性层输入1408)让系统自动计算
        #方法:将下行代码注释掉,再在forward中输出对应位置的x.size(1)
        self.fc = nn.Linear(1408, 10)

    def forward(self, x):
        #获取输入x的尺寸,这里即batch_size的大小
        in_size = x.size(0)

        #卷积-->池化-->relu
        x = F.relu(self.mp(self.conv1(x)))

        #经过第一个InceptionA模块
        x = self.incep1(x)

        #卷积-->池化-->relu
        x = F.relu(self.mp(self.conv2(x)))

        #经过第二个InceptionA模块
        x = self.incep2(x)

        #变形成 in_size 行,列自动变换
        x = x.view(in_size, -1)

        #如果想让程序自动计算出1408,将下方的代码(#print(x.size(1)))解除注释
        #并注释它的下一行:x = self.fc(x),其它地方不变,整个代码跑一次,
        #就能得到x.size(1),就是需要的全连接(线性层)的输入大小
        #print(x.size(1))
        x = self.fc(x)
        return x

#实例化
model = Net()

#损失函数及反馈
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

#训练
def train(epoch):
    running_loss = 0.0
    for batch_idx,data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    #不计算梯度,节省内存
    with torch.no_grad():
        for data in test_loader:
            #导入测试数据
            images, labels = data
            #带入模型,得到输出
            outputs = model(images)
            #找到输出中概率最大的下标及值
            _, predicted = torch.max(outputs.data, dim=1)
            #计算所有的测试个数
            total += labels.size(0)
            #计算正确的个数
            correct += (predicted == labels).sum().item()
    #输出准确率
    print('Accuracy on test set: %d %%' % (100 * correct / total))

if __name__ == '__main__':
    #训练10次
    for epoch in range(10):
        #训练
        train(epoch)
        #测试
        test()