TypeScript学习指南
本文由大佬阿宝哥整理,作者在原文基础上加以精简,原文地址
TypeScript介绍
typeScipt是一种由微软开发的自由和开源的编程语言。它是 JavaScript 的一个超集,而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程。
TypeScript 提供最新的和不断发展的 JavaScript 特性,包括那些来自 2015 年的 ECMAScript 和未来的提案中的特性,比如异步功能和 Decorators,以帮助建立健壮的组件。下图显示了 TypeScript 与 ES5、ES2015 和 ES2016 之间的关系:
一、为什么要用ts?
静态类型(核心)
静态类型化是一种功能,可以在开发人员编写脚本是检测错误,有了这项功能,就会允许开发人员编写更健壮的代码并对其进行维护,以便使得代码质量更好、更清晰。
大型项目的优势
于大型项目的开发,有时为了优化改进项目,对代码进行小小更改。这些小小的变化可能会产生严重的、意想不到的后果,因此有必要撤销这些变化。使用TypeScript工具来进行重构更变的容易、快捷。
更好的协作
对于大型项目的开发一般会有很多开发人员一起开发,此时乱码和错误的机也会增加。类型安全是一种在编码期间检测错误的功能,而不是在编译项目时检测错误。这为开发团队创建了一个更高效的编码和调试过程。
二、ts和js的区别
TypeScript | JavaScript |
JavaScript 的超集用于解决大型项目的代码复杂性 | 一种脚本语言,用于创建动态网页 |
可以在编译期间发现并纠正错误 | 作为一种解释型语言,只能在运行时发现错误 |
强类型,支持静态和动态类型 | 弱类型,没有静态类型选项 |
最终被编译成 JavaScript 代码,使浏览器可以理解 | 可以直接在浏览器中使用 |
支持模块、泛型和接口 | 不支持模块,泛型或接口 |
社区的支持仍在增长,而且还不是很大 | 大量的社区支持以及大量文档和解决问题的支持 |
- TypeScript能使用JavaScript 中的所有代码和编码概念
- TypeScript 从核心语言方面和类概念的模塑方面对 JavaScript 对象模型进行扩展
- JavaScript 代码可以在无需任何修改的情况下与 TypeScript 一同工作,同时可以使用编译器将 TypeScript 代码转换为 JavaScript
- TypeScript 通过类型注解提供编译时的静态类型检查
- TypeScript 中的数据要求带有明确的类型,JavaScript不要求
- TypeScript 为函数提供了缺省参数值
- TypeScript 引入了 JavaScript 中没有的“类”概念
- TypeScript 中引入了模块的概念,可以把声明、数据、函数和类封装在模块中
三、TypeScript基础数据类型
1.Boolean 类型
let isDone: boolean = false;
// ES5:var isDone = false;
2.Number 类型
let count: number = 10;
// ES5:var count = 10;
3.String 类型
let name: string = "semliker";
// ES5:var name = 'semlinker';
4.Array 类型
let list: number[] = [1, 2, 3];
// ES5:var list = [1,2,3];
let list: Array<number> = [1, 2, 3]; // Array<number>泛型语法
// ES5:var list = [1,2,3];
5.Array-元祖类型(tuple)
let arr:[String,number,boolean] = ["ts",3.18,true]
// ES5:var arr = ["ts", 3.18, true]
//强迫症类型
6.枚举类型
使用枚举我们可以定义一些带名字的常量。 使用枚举可以清晰地表达意图或创建一组有区别的用例。 TypeScript 支持数字的和基于字符串的枚举。
enum Flag {success=1,error=-1}
var f:Flag = Flag.success
// f==1 //true
ps:空间占中只有一份,为了解决空间紧张提出的类型
6.1 数字枚举
enum Direction {
NORTH,
SOUTH,
EAST,
WEST,
}
let dir: Direction = Direction.NORTH;
默认情况下,NORTH 的初始值为 0,其余的成员会从 1 开始自动增长。换句话说,Direction.SOUTH 的值为 1,Direction.EAST 的值为 2,Direction.WEST 的值为 3。
6.2 字符串枚举
enum Direction {
NORTH = "NORTH",
SOUTH = "SOUTH",
EAST = "EAST",
WEST = "WEST",
}
在 TypeScript 2.4 版本,允许我们使用字符串枚举。在一个字符串枚举里,每个成员都必须用字符串字面量,或另外一个字符串枚举成员进行初始化。
6.3 常量枚举
除了数字枚举和字符串枚举之外,还有一种特殊的枚举 —— 常量枚举。它是使用 const
关键字修饰的枚举,常量枚举会使用内联语法,不会为枚举类型编译生成任何 JavaScript。为了更好地理解这句话,我们来看一个具体的例子:
const enum Direction {
NORTH,
SOUTH,
EAST,
WEST,
}
let dir: Direction = Direction.NORTH;
以上代码对应的 ES5 代码如下:
"use strict";
var dir = 0 /* NORTH */;
6.4 异构枚举
异构枚举的成员值是数字和字符串的混合
enum Enum {
A,
B,
C = "C",
D = "D",
E = 8,
F,
}
7.Any 类型
在 TypeScript 中,任何类型都可以被归为 any 类型。这让 any 类型成为了类型系统的顶级类型(也被称作全局超级类型)
let notSure: any = 666;
notSure = "semlinker";
notSure = false;
any
类型本质上是类型系统的一个逃逸舱。作为开发者,这给了我们很大的自由:TypeScript 允许我们对 any
类型的值执行任何操作,而无需事先执行任何形式的检查。比如:
let value: any;
value.foo.bar; // OK
value.trim(); // OK
value(); // OK
new value(); // OK
value[0][1]; // OK
如果我们使用 any
类型,就无法使用 TypeScript 提供的大量的保护机制。为了解决 any
带来的问题,TypeScript 3.0 引入了 unknown
类型;
8.Unknown 类型
就像所有类型都可以赋值给 any
,所有类型也都可以赋值给 unknown
。这使得 unknown
成为 TypeScript 类型系统的另一种顶级类型(另一种是 any
)。下面我们来看一下 unknown
类型的使用示例:
let value: unknown;
value = true; // OK
value = 42; // OK
value = "Hello World"; // OK
value = []; // OK
value = {}; // OK
value = Math.random; // OK
value = null; // OK
value = undefined; // OK
value = new TypeError(); // OK
value = Symbol("type"); // OK
对 value
变量的所有赋值都被认为是类型正确的。但是,当我们尝试将类型为 unknown
的值赋值给其他类型的变量时会发生什么?
let value: unknown;
let value1: unknown = value; // OK
let value2: any = value; // OK
let value3: boolean = value; // Error
let value4: number = value; // Error
let value5: string = value; // Error
let value6: object = value; // Error
let value7: any[] = value; // Error
let value8: Function = value; // Error
unknown
类型只能被赋值给 any
类型和 unknown
类型本身。直观地说,这是有道理的:只有能够保存任意类型值的容器才能保存 unknown
类型的值。毕竟我们不知道变量 value
中存储了什么类型的值。
9.Void 类型
某种程度上来说,void 类型像是与 any 类型相反,它表示没有任何类型。当一个函数没有返回值时,你通常会见到其返回值类型是 void:
// 声明函数返回值为void
function warnUser(): void {
console.log("This is my warning message");
}
以上代码编译生成的 ES5 代码如下:
"use strict";
function warnUser() {
console.log("This is my warning message");
}
10.Null 和 Undefined 类型
TypeScript 里,undefined
和 null
两者有各自的类型分别为 undefined
和 null
let u: undefined = undefined;
let n: null = null;
11.Never 类型
never
类型表示的是那些永不存在的值的类型。 例如,never
类型是那些总是会抛出异常或根本就不会有返回值的函数表达式或箭头函数表达式的返回值类型。
// 返回never的函数必须存在无法达到的终点
function error(message: string): never {
throw new Error(message);
}
function infiniteLoop(): never {
while (true) {}
}
在 TypeScript 中,可以利用 never 类型的特性来实现全面性检查,具体示例如下:
type Foo = string | number;
function controlFlowAnalysisWithNever(foo: Foo) {
if (typeof foo === "string") {
// 这里 foo 被收窄为 string 类型
} else if (typeof foo === "number") {
// 这里 foo 被收窄为 number 类型
} else {
// foo 在这里是 never
const check: never = foo;
}
}
注意在 else 分支里面,我们把收窄为 never 的 foo 赋值给一个显示声明的 never 变量。如果一切逻辑正确,那么这里应该能够编译通过。但是假如后来有一天你的同事修改了 Foo 的类型:
type Foo = string | number | boolean;
然而他忘记同时修改 controlFlowAnalysisWithNever
方法中的控制流程,这时候 else 分支的 foo 类型会被收窄为 boolean
类型,导致无法赋值给 never 类型,这时就会产生一个编译错误。通过这个方式,我们可以确保
controlFlowAnalysisWithNever
方法总是穷尽了 Foo 的所有可能类型。 通过这个示例,我们可以得出一个结论:使用 never 避免出现新增了联合类型没有对应的实现,目的就是写出类型绝对安全的代码。
四、TypeScript函数
1.ts函数和js函数的区别
TypeScript | JavaScript |
含有类型 | 无类型 |
箭头函数 | 箭头函数(ES2015) |
函数类型 | 无函数类型 |
必填和可选参数 | 所有参数都是可选的 |
默认参数 | 默认参数 |
剩余参数 | 剩余参数 |
函数重载 | 无函数重载 |
2.箭头函数
常见用法
myBooks.forEach(() => console.log('reading'));
myBooks.forEach(title => console.log(title));
myBooks.forEach((title, idx, arr) =>
console.log(idx + '-' + title);
);
myBooks.forEach((title, idx, arr) => {
console.log(idx + '-' + title);
});
使用示例
// 未使用箭头函数
function Book() {
let self = this;
self.publishDate = 2016;
setInterval(function () {
console.log(self.publishDate);
}, 1000);
}
// 使用箭头函数
function Book() {
this.publishDate = 2016;
setInterval(() => {
console.log(this.publishDate);
}, 1000);
}
3.参数类型和返回类型
function createUserId(name: string, id: number): string {
return name + id;
}
4.函数类型
let IdGenerator: (chars: string, nums: number) => string;
function createUserId(name: string, id: number): string {
return name + id;
}
IdGenerator = createUserId;
5.可选参数及默认参数
// 可选参数
function createUserId(name: string, id: number, age?: number): string {
return name + id;
}
// 默认参数
function createUserId(
name: string = "semlinker",
id: number,
age?: number
): string {
return name + id;
}
在声明函数时,可以通过 ?
号来定义可选参数,比如 age?: number
这种形式。在实际使用时,需要注意的是可选参数要放在普通参数的后面,不然会导致编译错误。
6.剩余参数
function push(array, ...items) {
items.forEach(function (item) {
array.push(item);
});
}
let a = [];
push(a, 1, 2, 3);
7.函数重载
函数重载或方法重载是使用相同名称和不同参数数量或类型创建多个方法的一种能力。
function add(a: number, b: number): number;
function add(a: string, b: string): string;
function add(a: string, b: number): string;
function add(a: number, b: string): string;
function add(a: Combinable, b: Combinable) {
// type Combinable = string | number;
if (typeof a === 'string' || typeof b === 'string') {
return a.toString() + b.toString();
}
return a + b;
}
在以上代码中,我们为 add 函数提供了多个函数类型定义,从而实现函数的重载。在 TypeScript 中除了可以重载普通函数之外,我们还可以重载类中的成员方法。
方法重载是指在同一个类中方法同名,参数不同(参数类型不同、参数个数不同或参数个数相同时参数的先后顺序不同),调用时根据实参的形式,选择与它匹配的方法执行操作的一种技术。所以类中成员方法满足重载的条件是:在同一个类中,方法名相同且参数列表不同。下面我们来举一个成员方法重载的例子:
class Calculator {
add(a: number, b: number): number;
add(a: string, b: string): string;
add(a: string, b: number): string;
add(a: number, b: string): string;
add(a: Combinable, b: Combinable) {
if (typeof a === 'string' || typeof b === 'string') {
return a.toString() + b.toString();
}
return a + b;
}
}
const calculator = new Calculator();
const result = calculator.add('Semlinker', ' Kakuqo');
这里需要注意的是,当 TypeScript 编译器处理函数重载时,它会查找重载列表,尝试使用第一个重载定义。 如果匹配的话就使用这个。 因此,在定义重载的时候,一定要把最精确的定义放在最前面。另外在 Calculator 类中,add(a: Combinable, b: Combinable){ }
并不是重载列表的一部分,因此对于 add 成员方法来说,我们只定义了四个重载方法。
五、TypeScript接口
在面向对象语言中,接口是一个很重要的概念,它是对行为的抽象,而具体如何行动需要由类去实现。
1.接口对象的形状
interface Person {
name: string;
age: number;
}
let semlinker: Person = {
name: "semlinker",
age: 33,
};
2.可选|只读属性
interface Person {
readonly name: string;
age?: number;
}
只读属性用于限制只能在对象刚刚创建的时候修改其值。此外 TypeScript 还提供了 ReadonlyArray
类型,它与 Array
相似,只是把所有可变方法去掉了,因此可以确保数组创建后再也不能被修改。
let a: number[] = [1, 2, 3, 4];
let ro: ReadonlyArray<number> = a;
ro[0] = 12; // error!
ro.push(5); // error!
ro.length = 100; // error!
a = ro; // error!
3.任意属性
有时候我们希望一个接口中除了包含必选和可选属性之外,还允许有其他的任意属性,这时我们可以使用 索引签名 的形式来满足上述要求。
interface Person {
name: string;
age?: number;
[propName: string]: any;
}
const p1 = { name: "semlinker" };
const p2 = { name: "lolo", age: 5 };
const p3 = { name: "kakuqo", sex: 1 }
4.Extend(继承)
interface PartialPointX { x: number; }
interface Point extends PartialPointX {
y: number;
}
5.Implements(声明)
interface Point {
x: number;
y: number;
}
class SomePoint implements Point {
x = 1;
y = 2;
}
6.Declaration merging
接口可以定义多次,会被自动合并为单个接口
interface Point { x: number; }
interface Point { y: number; }
const point: Point = { x: 1, y: 2 };
六、TypeScript类
1.类的属性与方法
在面向对象语言中,类是一种面向对象计算机编程语言的构造,是创建对象的蓝图,描述了所创建的对象共同的属性和方法。
在 TypeScript 中,我们可以通过 Class
关键字来定义一个类:
class Greeter {
// 静态属性
static cname: string = "Greeter";
// 成员属性
greeting: string;
// 构造函数 - 执行初始化操作
constructor(message: string) {
this.greeting = message;
}
// 静态方法
static getClassName() {
return "Class name is Greeter";
}
// 成员方法
greet() {
return "Hello, " + this.greeting;
}
}
let greeter = new Greeter("world");
那么成员属性与静态属性,成员方法与静态方法有什么区别呢?这里无需过多解释,我们直接看一下编译生成的 ES5 代码:
"use strict";
var Greeter = /** @class */ (function () {
// 构造函数 - 执行初始化操作
function Greeter(message) {
this.greeting = message;
}
// 静态方法
Greeter.getClassName = function () {
return "Class name is Greeter";
};
// 成员方法
Greeter.prototype.greet = function () {
return "Hello, " + this.greeting;
};
// 静态属性
Greeter.cname = "Greeter";
return Greeter;
}());
var greeter = new Greeter("world");
2.ECMAScript 私有字段
在 TypeScript 3.8 版本就开始支持ECMAScript 私有字段,使用方式如下:
class Person {
#name: string;
constructor(name: string) {
this.#name = name;
}
greet() {
console.log(`Hello, my name is ${this.#name}!`);
}
}
let semlinker = new Person("Semlinker");
semlinker.#name;
// ~~~~~
// Property '#name' is not accessible outside class 'Person'
// because it has a private identifier.
与常规属性(甚至使用 private
修饰符声明的属性)不同,私有字段要牢记以下规则:
- 私有字段以
#
字符开头,有时我们称之为私有名称; - 每个私有字段名称都唯一地限定于其包含的类;
- 不能在私有字段上使用 TypeScript 可访问性修饰符(如 public 或 private);
- 私有字段不能在包含的类之外访问,甚至不能被检测到。
3.访问器
在 TypeScript 中,我们可以通过 getter
和 setter
方法来实现数据的封装和有效性校验,防止出现异常数据。
let passcode = "Hello TypeScript";
class Employee {
private _fullName: string;
get fullName(): string {
return this._fullName;
}
set fullName(newName: string) {
if (passcode && passcode == "Hello TypeScript") {
this._fullName = newName;
} else {
console.log("Error: Unauthorized update of employee!");
}
}
}
let employee = new Employee();
employee.fullName = "Semlinker";
if (employee.fullName) {
console.log(employee.fullName);
}
4.类的继承
继承(Inheritance)是一种联结类与类的层次模型。指的是一个类(称为子类、子接口)继承另外的一个类(称为父类、父接口)的功能,并可以增加它自己的新功能的能力,继承是类与类或者接口与接口之间最常见的关系。
继承是一种 is-a 关系:
在 TypeScript 中,我们可以通过 extends
关键字来实现继承:
class Animal {
name: string;
constructor(theName: string) {
this.name = theName;
}
move(distanceInMeters: number = 0) {
console.log(`${this.name} moved ${distanceInMeters}m.`);
}
}
class Snake extends Animal {
constructor(name: string) {
super(name); // 调用父类的构造函数
}
move(distanceInMeters = 5) {
console.log("Slithering...");
super.move(distanceInMeters);
}
}
let sam = new Snake("Sammy the Python");
sam.move();
5.抽象类
使用 abstract
关键字声明的类,我们称之为抽象类。抽象类不能被实例化,因为它里面包含一个或多个抽象方法。所谓的抽象方法,是指不包含具体实现的方法:
abstract class Person {
constructor(public name: string){}
abstract say(words: string) :void;
}
// Cannot create an instance of an abstract class.(2511)
const lolo = new Person(); // Error
抽象类不能被直接实例化,我们只能实例化实现了所有抽象方法的子类。具体如下所示:
abstract class Person {
constructor(public name: string){}
// 抽象方法
abstract say(words: string) :void;
}
class Developer extends Person {
constructor(name: string) {
super(name);
}
say(words: string): void {
console.log(`${this.name} says ${words}`);
}
}
const lolo = new Developer("lolo");
lolo.say("I love ts!"); // lolo says I love ts!
6.类方法重载
对于类的方法来说,它也支持重载。
class ProductService {
getProducts(): void;
getProducts(id: number): void;
getProducts(id?: number) {
if(typeof id === 'number') {
console.log(`获取id为 ${id} 的产品信息`);
} else {
console.log(`获取所有的产品信息`);
}
}
}
const productService = new ProductService();
productService.getProducts(666); // 获取id为 666 的产品信息
productService.getProducts(); // 获取所有的产品信息
七、TypeScript泛型
在像 C# 和 Java 这样的语言中,可以使用泛型来创建可重用的组件,一个组件可以支持多种类型的数据。 这样用户就可以以自己的数据类型来使用组件。
泛型(Generics)是允许同一个函数接受不同类型参数的一种模板。相比于使用 any 类型,使用泛型来创建可复用的组件要更好,因为泛型会保留参数类型。
1.泛型语法
对于刚接触 TypeScript 泛型的读者来说,首次看到 语法会感到陌生。其实它没有什么特别,就像传递参数一样,我们传递了我们想要用于特定函数调用的类型。
参考上面的图片,当我们调用 identity(1) ,Number 类型就像参数 1 一样,它将在出现 T 的任何位置填充该类型。图中内部的 T 被称为类型变量,它是我们希望传递给 identity 函数的类型占位符,同时它被分配给value参数用来代替它的类型:此时T充当的是类型,而不是特定的 Number 类型。
其中 T代表 Type,在定义泛型时通常用作第一个类型变量名称。但实际上 T 可以用任何有效名称代替。除了 T 之外,以下是常见泛型变量代表的意思:
- K(Key):表示对象中的键类型;
- V(Value):表示对象中的值类型;
- E(Element):表示元素类型。
其实并不是只能定义一个类型变量,我们可以引入希望定义的任何数量的类型变量。比如我们引入一个新的类型变量 U,用于扩展我们定义的 identity
函数:
function identity <T, U>(value: T, message: U) : T {
console.log(message);
return value;
}
console.log(identity<Number, string>(68, "Semlinker"));
除了为类型变量显式设定值之外,一种更常见的做法是使编译器自动选择这些类型,从而使代码更简洁。我们可以完全省略尖括号,比如:
function identity <T, U>(value: T, message: U) : T {
console.log(message);
return value;
}
console.log(identity(68, "Semlinker"));
对于上述代码,编译器足够聪明,能够知道我们的参数类型,并将它们赋值给 T 和 U,而不需要开发人员显式指定它们。
2.泛型接口
interface GenericIdentityFn<T> {
(arg: T): T;
}
3.泛型类
class GenericNumber<T> {
zeroValue: T;
add: (x: T, y: T) => T;
}
let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function (x, y) {
return x + y;
};
4.泛型工具类型
4.1 typeof
在 TypeScript 中,typeof
操作符可以用来获取一个变量声明或对象的类型。
interface Person {
name: string;
age: number;
}
const sem: Person = { name: 'semlinker', age: 33 };
type Sem= typeof sem; // -> Person
function toArray(x: number): Array<number> {
return [x];
}
type Func = typeof toArray; // -> (x: number) => number[]
4.2 keyof
keyof
操作符是在 TypeScript 2.1 版本引入的,该操作符可以用于获取某种类型的所有键,其返回类型是联合类型。
interface Person {
name: string;
age: number;
}
type K1 = keyof Person; // "name" | "age"
type K2 = keyof Person[]; // "length" | "toString" | "pop" | "push" | "concat" | "join"
type K3 = keyof { [x: string]: Person }; // string | number
4.3 in
in
用来遍历枚举类型:
type Keys = "a" | "b" | "c"
type Obj = {
[p in Keys]: any
} // -> { a: any, b: any, c: any }
4.4 infer
在条件类型语句中,可以用 infer
声明一个类型变量并且对它进行使用。
type ReturnType<T> = T extends (
...args: any[]
) => infer R ? R : any;
以上代码中 infer R
就是声明一个变量来承载传入函数签名的返回值类型,简单说就是用它取到函数返回值的类型方便之后使用。
4.5 extends
有时候我们定义的泛型不想过于灵活或者说想继承某些类等,可以通过 extends 关键字添加泛型约束。
interface Lengthwise {
length: number;
}
function loggingIdentity<T extends Lengthwise>(arg: T): T {
console.log(arg.length);
return arg;
}
现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:
loggingIdentity(3); // Error, number doesn't have a .length property
这时我们需要传入符合约束类型的值,必须包含必须的属性:
loggingIdentity({length: 10, value: 3});
4.6 Partial
Partial
的作用就是将某个类型里的属性全部变为可选项 ?
。
定义:
/**
* node_modules/typescript/lib/lib.es5.d.ts
* Make all properties in T optional
*/
type Partial<T> = {
[P in keyof T]?: T[P];
};
在以上代码中,首先通过 keyof T
拿到 T
的所有属性名,然后使用 in
进行遍历,将值赋给 P
,最后通过 T[P]
取得相应的属性值。中间的 ?
号,用于将所有属性变为可选。
示例:
interface Todo {
title: string;
description: string;
}
function updateTodo(todo: Todo, fieldsToUpdate: Partial<Todo>) {
return { ...todo, ...fieldsToUpdate };
}
const todo1 = {
title: "Learn TS",
description: "Learn TypeScript",
};
const todo2 = updateTodo(todo1, {
description: "Learn TypeScript Enum",
});
在上面的 updateTodo
方法中,我们利用 Partial
工具类型,定义 fieldsToUpdate
的类型为 Partial
,即:
{
title?: string | undefined;
description?: string | undefined;
}
perty
这时我们需要传入符合约束类型的值,必须包含必须的属性:
loggingIdentity({length: 10, value: 3});
##### 4.6 Partial
`Partial` 的作用就是将某个类型里的属性全部变为可选项 `?`。
定义:
/**
• node_modules/typescript/lib/lib.es5.d.ts
• Make all properties in T optional
*/
type Partial = {
[P in keyof T]?: T[P];
};在以上代码中,首先通过 `keyof T` 拿到 `T` 的所有属性名,然后使用 `in` 进行遍历,将值赋给 `P`,最后通过 `T[P]` 取得相应的属性值。中间的 `?` 号,用于将所有属性变为可选。
示例:interface Todo {
title: string;
description: string;
}function updateTodo(todo: Todo, fieldsToUpdate: Partial) {
return { …todo, …fieldsToUpdate };
}const todo1 = {
title: “Learn TS”,
description: “Learn TypeScript”,
};const todo2 = updateTodo(todo1, {
description: “Learn TypeScript Enum”,
});在上面的 `updateTodo` 方法中,我们利用 `Partial` 工具类型,定义 `fieldsToUpdate` 的类型为 `Partial`,即:{
title?: string | undefined;
description?: string | undefined;
}### 八、ts工程化