人工神经网络的发展历史
1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。
他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。
60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。
M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。
他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。
在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。
1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。
1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。
1986年进行认知微观结构地研究,提出了并行分布处理的理论。1986年,Rumelhart,Hinton,Williams发展了BP算法。
Rumelhart和McClelland出版了《Paralleldistributionprocessing:explorationsinthemicrostructuresofcognition》。
迄今,BP算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
1988年,Broomhead和Lowe用径向基函数(Radialbasisfunction,RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
90年代初,Vapnik等提出了支持向量机(Supportvectormachines,SVM)和VC(Vapnik-Chervonenkis)维数的概念。
人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。
在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。
谷歌人工智能写作项目:小发猫
神经网络算法的人工神经网络
人工神经网络(ArtificialNeuralNetworks,ANN)系统是20世纪40年代后出现的深度神经网络与传统神经网络有什么区别。
它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。
BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。
BP神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。
而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。
人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。
树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。
在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。
每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。
人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。
与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。
在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。
这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。
一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。(1)人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。
如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。
人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。
通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。
(2)泛化能力泛化能力指对没有训练过的样本,有很好的预测能力和控制能力。特别是,当存在一些有噪声的样本,网络具备很好的预测能力。
(3)非线性映射能力当对系统对于设计人员来说,很透彻或者很清楚时,则一般利用数值分析,偏微分方程等数学工具建立精确的数学模型,但当对系统很复杂,或者系统未知,系统信息量很少时,建立精确的数学模型很困难时,神经网络的非线性映射能力则表现出优势,因为它不需要对系统进行透彻的了解,但是同时能达到输入与输出的映射关系,这就大大简化设计的难度。
(4)高度并行性并行性具有一定的争议性。承认具有并行性理由:神经网络是根据人的大脑而抽象出来的数学模型,由于人可以同时做一些事,所以从功能的模拟角度上看,神经网络也应具备很强的并行性。
多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。
在寻找上述问题答案的研究过程中,这些年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。
不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
下面将人工神经网络与通用的计算机工作特点来对比一下:若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。
但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。
人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。
虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。
普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。
心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。
1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。
因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。
1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。
但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。
虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。
这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。
然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。
60年代末期,人工神经网络的研究进入了低潮。另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。
当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。
80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。
美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。
随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。
1985年,Ackley、Hinton和Sejnowski将模拟退火算法应用到神经网络训练中,提出了Boltzmann机,该算法具有逃离极值的优点,但是训练时间需要很长。
1986年,Rumelhart、Hinton和Williams提出了多层前馈神经网络的学习算法,即BP算法。它从证明的角度推导算法的正确性,是学习算法有理论依据。从学习算法角度上看,是一个很大的进步。
1988年,Broomhead和Lowe第一次提出了径向基网络:RBF网络。总体来说,神经网络经历了从高潮到低谷,再到高潮的阶段,充满曲折的过程。
神经网络算法原理
一共有四种算法及原理,如下所示:1、自适应谐振理论(ART)网络自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。
这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。2、学习矢量量化(LVQ)网络学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。
该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。
3、Kohonen网络Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。
连接权值形成与已知输出神经元相连的参考矢量的分量。4、Hopfield网络Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。
它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。扩展资料:人工神经网络算法的历史背景:该算法系统是20世纪40年代后出现的。
它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。BP算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。
BP神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。
而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。
参考资料来源:百度百科——神经网络算法。
人工智能的发展概况
探讨人工智能,就要回答什么是智能的问题,综合各类定义,智能是一种知识与思维的合成,是人类认识世界和改造世界过程中的一种分析问题和解决问题的综合能力。
对于人工智能,美国麻省理工学院的温斯顿教授提出“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作”,斯坦福大学人工智能研究中心尼尔逊教授提出“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学”。
综合来看人工智能是相对人的智能而言的。其本质是对人思维的信息过程的模拟,是人的智能的物化。是研究、开发模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
(一)感知、处理和反馈构成人工智能的三个关键环节人工智能经过信息采集、处理和反馈三个核心环节,综合表现出智能感知、精确性计算、智能反馈控制,即感知、思考、行动三个层层递进的特征。
智能感知:智能的产生首先需要收集到足够多的结构化数据去表述场景,因此智能感知是实现人工智能的第一步。
智能感知技术的目的是使计算机能“听”、会“看”,目前相应的计算机视觉技术和自然语言处理技术均已经初步成熟,开始商业化尝试。
智能处理:产生智能的第二步是使计算机具备足够的计算能力模拟人的某些思维过程和行为对分析收集来的数据信息做出判断,即对感知的信息进行自我学习、信息检索、逻辑判断、决策,并产生相应反映。
具体的研究领域包括知识表达、自动推理、机器学习等,与精确性计算及编程技术、存储技术、网络技术等密切相关,是大数据技术发展的远期目标,目前该领域研究还处于实验室研究阶段,其中机器学习是人工智能领域目前热度最高,科研成果最密集的领域。
智能反馈:智能反馈控制将前期处理和判断的结果转译为肢体运动和媒介信息传输给人机交互界面或外部设备,实现人机、机物的信息交流和物理互动。
智能反馈控制是人工智能最直观的表现形式,其表达能力展现了系统整体的智能水平。
智能反馈控制领域与机械技术、控制技术和感知技术密切相关,整体表现为机器人学,目前机械技术受制于材料学发展缓慢,控制技术受益于工业机器人领域的积累相对成熟。
(二)深度学习是当前最热的人工智能研究领域在学术界,实现人工智能有三种路线,一是基于逻辑方法进行功能模拟的符号主义路线,代表领域有专家系统和知识工程。
二是基于统计方法的仿生模拟的连接主义路线,代表领域有机器学习和人脑仿生,三是行为主义,希望从进化的角度出发,基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。
当前,基于人工神经网络的深度学习技术是当前最热的研究领域,被Google,Facebook,IBM,百度,NEC以及其他互联网公司广泛使用,来进行图像和语音识别。
人工神经网络从上个世纪80年代起步,科学家不断优化和推进算法的研究,同时受益于计算机技术的快速提升,目前科学家可以利用GPU(图形处理器)模拟超大型的人工神经网络;互联网业务的快速发展,为深度学习提供了上百万的样本进行训练,上述三个因素共同作用下使语音识别技术和图像识别技术能够达到90%以上的准确率。
(三)主要发达国家积极布局人工智能技术,抢占战略制高点。各国政府高度重视人工智能相关产业的发展。
自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入,其中美国政府主要通过公共投资的方式牵引人工智能产业的发展,2013财年美国政府将22亿美元的国家预算投入到了先进制造业,投入方向之一便是“国家机器人计划”。
在技术方向上,美国将机器人技术列为警惕技术,主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。现阶段的技术突破的重点一是云机器人技术,二是人脑仿生计算技术。
美国、日本、巴西等国家均将云机器人作为机器人技术的未来研究方向之一。
伴随着宽带网络设施的普及,云计算、大数据等技术的不断发展,未来机器人技术成本的进一步降低和机器人量产化目标实现,机器人通过网络获得数据或者进行处理将成为可能。
目前国外相关研究的方向包括:建立开放系统机器人架构(包括通用的硬件与软件平台)、网络互联机器人系统平台、机器人网络平台的算法和图像处理系统开发、云机器人相关网络基础设施的研究等。
由于深度学习的成功,学术界进一步沿着连接主义的路线提升计算机对人脑的模拟程度。
人脑仿生计算技术的发展,将使电脑可以模仿人类大脑的运算并能够实现学习和记忆,同时可以触类旁通并实现对知识的创造,这种具有创新能力的设计将会让电脑拥有自我学习和创造的能力,与人类大脑的功能几无二致。
在2013年初的国情咨文中,美国总统奥巴马特别提到为人脑绘图的计划,宣布投入30亿美元在10年内绘制出“人类大脑图谱”,以了解人脑的运行机理。
欧盟委员会也在2013年初宣布,石墨烯和人脑工程两大科技入选“未来新兴旗舰技术项目”,并为此设立专项研发计划,每项计划将在未来10年内分别获得10亿欧元的经费。
美国IBM公司正在研究一种新型的仿生芯片,利用这些芯片,人类可以实现电脑模仿人脑的运算过程,预计最快到2019年可完全模拟出人类大脑。
(四)高科技企业普遍将人工智能视为下一代产业革命和互联网革命的技术引爆点进行投资,加快产业化进程。
谷歌在2013年完成了8家机器人相关企业的收购,在机器学习方面也大肆搜罗企业和人才,收购了DeepMind和计算机视觉领军企业AndrewZisserman,又聘请DARPA原负责人ReginaDugan负责颠覆性创新项目的研究,并安排构建Google基础算法和开发平台的著名计算机科学家JeffDean转战深度学习领域。
苹果2014年在自动化上的资本支出预算高达110亿美元。
苹果手机中采用的Siri智能助理脱胎于美国先进研究项目局(DARPA)投资1.5亿美元,历时5年的CALO(CognitiveAssistantthatLearnsandOrganizes)项目,是美国首个得到大规模产业化应用的人工智能项目。
Amazon计划在2015年能够使用自己的机器人飞行器进行快递服务。
韩国和日本的各家公司也纷纷把机器人技术移植到制造业新领域并尝试进入服务业(五)人工智能的实际应用人工智能概念从1956年提出,到今天初步具备产品化的可能性经历了58年的演进,各个重要组成部分的研究进度和产品化水平各不相同。
人工智能产品的发展是一个渐进性的过程,是一个从单一功能设备向通用设备,从单一场景到复杂场景,从简单行为到复杂行为的发展过程,具有多种表现形式。
人工智能产品近期仍将作为辅助人类工作的工具出现,多表现为传统设备的升级版本,如智能/无人驾驶汽车,扫地机器人,医疗机器人等。
汽车、吸尘器等产品和人类已经有成熟的物理交互模式,人工智能技术通过赋予上述产品一定的机器智能来提升其自动工作的能力。
但未来将会出现在各类环境中模拟人类思维模式去执行各类任务的真正意义的智能机器人,这类产品没有成熟的人机接口可以借鉴,需要从机械、控制、交互各个层面进行全新研发。希望我的回答可以帮到您哦。
什么是人工神经元算法
人工神经网络算法“人工神经网络”(ARTIFICIALNEURALNETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。
早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。
其后,FRosenblatt、Widrow和J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。
每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。
其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。
神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。
神经元的树突与另外的神经元的神经末梢相连的部分称为突触。
人工神经网络评价法
人工神经元是人工神经网络的基本处理单元,而人工智能的一个重要组成部分又是人工神经网络。人工神经网络是模拟生物神经元系统的数学模型,接受信息主要是通过神经元来进行的。
首先,人工神经元利用连接强度将产生的信号扩大;然后,接收到所有与之相连的神经元输出的加权累积;最后,将神经元与加权总和一一比较,当比阈值大时,则激活人工神经元,信号被输送至与它连接的上一层的神经元,反之则不行。
人工神经网络的一个重要模型就是反向传播模型(Back-PropagationModel)(简称BP模型)。
对于一个拥有n个输入节点、m个输出节点的反向传播网络,可将输入到输出的关系看作n维空间到m维空间的映射。由于网络中含有大量非线性节点,所以可具有高度非线性。
(一)神经网络评价法的步骤利用神经网络对复垦潜力进行评价的目的就是对某个指标的输入产生一个预期的评价结果,在此过程中需要对网络的连接弧权值进行不断的调整。(1)初始化所有连接弧的权值。
为了保证网络不会出现饱和及反常的情况,一般将其设置为较小的随机数。(2)在网络中输入一组训练数据,并对网络的输出值进行计算。
(3)对期望值与输出值之间的偏差进行计算,再从输出层逆向计算到第一隐含层,调整各条弧的权值,使其往减少该偏差的方向发展。
(4)重复以上几个步骤,对训练集中的各组训练数据反复计算,直至二者的偏差达到能够被认可的程度为止。(二)人工神经网络模型的建立(1)确定输入层个数。
根据评价对象的实际情况,输入层的个数就是所选择的评价指标数。(2)确定隐含层数。
通常最为理想的神经网络只具有一个隐含层,输入的信号能够被隐含节点分离,然后组合成新的向量,其运算快速,可让复杂的事物简单化,减少不必要的麻烦。(3)确定隐含层节点数。
按照经验公式:灾害损毁土地复垦式中:j——隐含层的个数;n——输入层的个数;m——输出层的个数。人工神经网络模型结构如图5-2。
图5-2人工神经网络结构图(据周丽晖,2004)(三)人工神经网络的计算输入被评价对象的指标信息(X1,X2,X3,…,Xn),计算实际输出值Yj。
灾害损毁土地复垦比较已知输出与计算输出,修改K层节点的权值和阈值。灾害损毁土地复垦式中:wij——K-1层结点j的连接权值和阈值;η——系数(0<η<1);Xi——结点i的输出。
输出结果:Cj=yj(1-yj)(dj-yj)(5-21)式中:yj——结点j的实际输出值;dj——结点j的期望输出值。
因为无法对隐含结点的输出进行比较,可推算出:灾害损毁土地复垦式中:Xj——结点j的实际输出值。
它是一个轮番代替的过程,每次的迭代都将W值调整,这样经过反复更替,直到计算输出值与期望输出值的偏差在允许值范围内才能停止。
利用人工神经网络法对复垦潜力进行评价,实际上就是将土地复垦影响评价因子与复垦潜力之间的映射关系建立起来。
只要选择的网络结构合适,利用人工神经网络函数的逼近性,就能无限接近上述映射关系,所以采用人工神经网络法进行灾毁土地复垦潜力评价是适宜的。
(四)人工神经网络方法的优缺点人工神经网络方法与其他方法相比具有如下优点:(1)它是利用最优训练原则进行重复计算,不停地调试神经网络结构,直至得到一个相对稳定的结果。
所以,采取此方法进行复垦潜力评价可以消除很多人为主观因素,保证了复垦潜力评价结果的真实性和客观性。(2)得到的评价结果误差相对较小,通过反复迭代减少系统误差,可满足任何精度要求。
(3)动态性好,通过增加参比样本的数量和随着时间不断推移,能够实现动态追踪比较和更深层次的学习。
(4)它以非线性函数为基础,与复杂的非线性动态经济系统更贴近,能够更加真实、更为准确地反映出灾毁土地复垦潜力,比传统评价方法更适用。
但是人工神经网络也存在一定的不足:(1)人工神经网络算法是采取最优化算法,通过迭代计算对连接各神经元之间的权值不断地调整,直到达到全局最优化。
但误差曲面相当复杂,在计算过程中一不小心就会使神经网络陷入局部最小点。
(2)误差通过输出层逆向传播,隐含层越多,逆向传播偏差在接近输入层时就越不准确,评价效率在一定程度上也受到影响,收敛速度不及时的情况就容易出现,从而造成个别区域的复垦潜力评价结果出现偏离。
人工神经网络算法研究及应用的目录
。
第1章绪论1.1神经网络在石油生产中的应用简介1.2神经网络的研究与发展历史1.3储层预测的研究与进展1.4神经网络模式识别概述1.5遗传算法研究与发展概述1.6模拟退火算法的研究和发展概况1.7支持向量机的研究与进展1.8本书的主要研究内容及章节安排第2章人工神经网络2.1引言2.2神经元模型2.3神经网络模型2.4感知器2.5误差回传神经网络(BP)2.6神经网络的优点2.7本章小结第3章改进遗传算法的径向基函数网络方法研究及应用3.1引言3.2径向基函数网络3.3遗传算法3.4自适应遗传算法(AGA)基本原理3.5基于改进遗传算法的径向基函数网络3.6改进的遗传算法径向基函数网络的应用3.7本章小结第4章小波变换及小波神经网络方法研究及应用4.1引言4.2小波分析4.3小波变换模极大检测地震反射界面4.4小波神经网络4.5小波神经网络的应用一4.6本章小结第5章模糊神经网络方法研究及应用5.1引言5.2模糊理论5.3模糊关系和模糊逻辑推理5.4模糊逻辑系统5.5模糊系统和神经网络的融合5.6模糊神经网络5.7用于火山岩储层识别预测的模糊神经网络5.8基于模糊神经网络的火山岩储层的识别与预测5.9基于模糊神经网络多传感器数据融合的海底输油管道腐蚀检测系统5.10本章小结第6章改进的模拟退火人工神经网络方法研究及应用6.1引言6.2模拟退火算法及其特性6.3模拟退火算法的渐近收敛性6.4模拟退火算法与局部搜索算法比较6.5鲍威尔(P0well)算法6.6改进的模拟退火人工神经网络6.7改进的模拟退火人工神经网络应用6.8算法比较6.9本章小结第7章支持向量机方法研究及应用7.1引言7.2机器学习的基本问题和方法7.3统计学习理论的主要内容7.4分类支持向量机7.5回归支持向量机7.6支持向量机的应用7.7本章小结第8章结论参考文献。
人工智能的发展可分为几个阶段?
说起当下热议的人工智能,不得不提到风光无二的AlphaGo 。AlphaGo 战胜世界围棋冠军李世石,引起了人类对人工智能的兴趣。而人工智能的概念,其实早有提出。
就人工智能的发展阶段而言,可以分为三个阶段。1)1956年-1980年1956年达特茅斯会提出了人工智能这一词汇,标志着人工智能正式诞生。
而这个阶段,人工智能已经在问题求解以及语言处理等方面取得了一些进步。但是,当时的技术条件并不能实现预期的目标。到了70年代,投资者和政府开始收缩人工智能经费,人工智能开始进入低谷期。
2)1980年-1993年80年代,人工智能专家系统崭露头角,商业价值被广泛接受,人工智能研究重新兴起。
但并没有持续多久,就被生产出来的个人电脑在性能上完全碾压,远远超过使用了AI技术的LISP机,AI再一次经历了寒冬。
3)1993年-至今之后以神经网络技术为代表的AI技术逐步发展,人工智能开始进入缓慢发展期。1997年深蓝战胜国际象棋世界冠军卡斯帕罗夫,使得AI再次被热议。
而随着现在科技的快速发展,硬件成本不断降低,数据量积累不断增大,AI技术不断成熟,人工智能又开始进入爆发期。各种人工智能产品开始如雨后春笋,不断的发展壮大起来。