1. 寻找已知物体
在FLANN特征匹配的基础上,可以通过利用Homography(单应性矩阵)映射寻找物体。具体步骤如下:
①使用findHomography函数找到匹配上的关键点之间的变换;
②使用perspectiveTransform函数来映射点。
1.1 findHomography()函数
此函数作用是找到并返回原图像与目标图像之间的透视变换H
//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
int method=0, double ransacReprojThreshold=3,
OutputArray mask=noArray());
//! variant of findHomography for backward compatibility
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
OutputArray mask, int method=0, double ransacReprojThreshold=3);
第一个参数:源平面的对应点,可以是CV_32FC2或vector< Point2f >类型;
第二个参数:目标平面的对应点,可以是CV_32FC2或vector< Point2f >类型;
第三个参数:用于计算单应矩阵的方法,默认为0,即使用所有点的常规方法;
为CV_ RANSAC时,使用RANSAC的鲁棒性方法;为CV_LMEDS时,使用最小中值鲁棒性方法。
第四个参数:允许重投影误差的最大值,默认为3,一般取1-10。
1.2 perspectiveTransform()函数
perspectiveTransform函数的作用是进行向量透视矩阵变换。
void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
第三个参数:变换矩阵,为3×3或4×4浮点型矩阵。
1.3 程序实例
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include <iostream>
using namespace cv;
using namespace std;
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main( )
{
//【0】改变console字体颜色
system("color 1F");
//【1】载入原始图片
Mat srcImage1 = imread( "1.jpg", 1 );
Mat srcImage2 = imread( "2.jpg", 1 );
if( !srcImage1.data || !srcImage2.data )
{ printf("读取图片错误,请确定目录下是否有imread函数指定的图片存在~! \n"); return false; }
//【2】使用SURF算子检测关键点
int minHessian = 400;//SURF算法中的hessian阈值
SurfFeatureDetector detector( minHessian );//定义一个SurfFeatureDetector(SURF) 特征检测类对象
vector<KeyPoint> keypoints_object, keypoints_scene;//vector模板类,存放任意类型的动态数组
//【3】调用detect函数检测出SURF特征关键点,保存在vector容器中
detector.detect( srcImage1, keypoints_object );
detector.detect( srcImage2, keypoints_scene );
//【4】计算描述符(特征向量)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( srcImage1, keypoints_object, descriptors_object );
extractor.compute( srcImage2, keypoints_scene, descriptors_scene );
//【5】使用FLANN匹配算子进行匹配
FlannBasedMatcher matcher;
vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;//最小距离和最大距离
//【6】计算出关键点之间距离的最大值和最小值
for( int i = 0; i < descriptors_object.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf(">Max dist 最大距离 : %f \n", max_dist );
printf(">Min dist 最小距离 : %f \n", min_dist );
//【7】存下匹配距离小于3*min_dist的点对
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{
if( matches[i].distance < 3*min_dist )
{
good_matches.push_back( matches[i]);
}
}
//绘制出匹配到的关键点
Mat img_matches;
drawMatches( srcImage1, keypoints_object, srcImage2, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//定义两个局部变量
vector<Point2f> obj;
vector<Point2f> scene;
//从匹配成功的匹配对中获取关键点
for( unsigned int i = 0; i < good_matches.size(); i++ )
{
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );//计算透视变换
//从待测图片中获取角点
vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( srcImage1.cols, 0 );
obj_corners[2] = cvPoint( srcImage1.cols, srcImage1.rows ); obj_corners[3] = cvPoint( 0, srcImage1.rows );
vector<Point2f> scene_corners(4);
//进行透视变换
perspectiveTransform( obj_corners, scene_corners, H);
//绘制出角点之间的直线
line( img_matches, scene_corners[0] + Point2f( static_cast<float>(srcImage1.cols), 0), scene_corners[1] + Point2f( static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4 );
line( img_matches, scene_corners[1] + Point2f( static_cast<float>(srcImage1.cols), 0), scene_corners[2] + Point2f( static_cast<float>(srcImage1.cols), 0), Scalar( 255, 0, 123), 4 );
line( img_matches, scene_corners[2] + Point2f( static_cast<float>(srcImage1.cols), 0), scene_corners[3] + Point2f( static_cast<float>(srcImage1.cols), 0), Scalar( 255, 0, 123), 4 );
line( img_matches, scene_corners[3] + Point2f( static_cast<float>(srcImage1.cols), 0), scene_corners[0] + Point2f( static_cast<float>(srcImage1.cols), 0), Scalar( 255, 0, 123), 4 );
//显示最终结果
imshow( "效果图", img_matches );
waitKey(0);
return 0;
}
2. ORB特征提取
ORB是Oriented Brief的简称,是brief算法的改进版。ORB算法比SIFT算法效率高两个数量级,在计算速度上ORB是SIFT的100倍,是SURF的十倍。ORB算法的综合性能在各种评测中较其他特征提取算法是最好的!
要了解ORB算法首先从Brief描述子开始说起。
2.1 Brief描述子
Brief是Binary Robust Independent Elementary Features的缩写。这个描述子是EPFL的Calonder在ECCV2010上提出的。
Brief的主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值组成一个二进制串,并将这个二进制串作为该特征点的特征描述子。
Brief的优点在于运算速度快,缺点在于①不具备旋转不变性;②对噪声敏感;③不具备尺度不变性。
ORB算法的提出就是为了解决上述①、②缺点。
然而ORB没有试图解决尺度不变性,因为FAST算法具有尺度不变性。
2.2 ORB类
在OpenCV中ORB、OrbFeatureDetector、OrbDescriptorExtractor是同一类。
typedef ORB OrbFeatureDetector;
typedef ORB OrbDescriptorExtractor;
2.3 程序实例
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>
using namespace cv;
using namespace std;
//--------------------------------------【main( )函数】-----------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main( )
{
//【0】改变console字体颜色
system("color 2F");
//【0】载入源图,显示并转化为灰度图
Mat srcImage = imread("1.jpg");
imshow("原始图",srcImage);
Mat grayImage;
cvtColor(srcImage, grayImage, CV_BGR2GRAY);
//------------------检测SIFT特征点并在图像中提取物体的描述符----------------------
//【1】参数定义
OrbFeatureDetector featureDetector;
vector<KeyPoint> keyPoints;
Mat descriptors;
//【2】调用detect函数检测出特征关键点,保存在vector容器中
featureDetector.detect(grayImage, keyPoints);
//【3】计算描述符(特征向量)
OrbDescriptorExtractor featureExtractor;
featureExtractor.compute(grayImage, keyPoints, descriptors);
//【4】基于FLANN的描述符对象匹配
flann::Index flannIndex(descriptors, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);
//【5】初始化视频采集对象
VideoCapture cap(0);
unsigned int frameCount = 0;//帧数
//【6】轮询,直到按下ESC键退出循环
while(1)
{
double time0 = static_cast<double>(getTickCount( ));//记录起始时间
Mat captureImage, captureImage_gray;//定义两个Mat变量,用于视频采集
cap >> captureImage;//采集视频帧
if( captureImage.empty())//采集为空的处理
continue;
//转化图像到灰度
cvtColor( captureImage, captureImage_gray, CV_BGR2GRAY);//采集的视频帧转化为灰度图
//【7】检测SIFT关键点并提取测试图像中的描述符
vector<KeyPoint> captureKeyPoints;
Mat captureDescription;
//【8】调用detect函数检测出特征关键点,保存在vector容器中
featureDetector.detect(captureImage_gray, captureKeyPoints);
//【9】计算描述符
featureExtractor.compute(captureImage_gray, captureKeyPoints, captureDescription);
//【10】匹配和测试描述符,获取两个最邻近的描述符
Mat matchIndex(captureDescription.rows, 2, CV_32SC1), matchDistance(captureDescription.rows, 2, CV_32FC1);
flannIndex.knnSearch(captureDescription, matchIndex, matchDistance, 2, flann::SearchParams());//调用K邻近算法
//【11】根据劳氏算法(Lowe's algorithm)选出优秀的匹配
vector<DMatch> goodMatches;
for(int i = 0; i < matchDistance.rows; i++)
{
if(matchDistance.at<float>(i, 0) < 0.6 * matchDistance.at<float>(i, 1))
{
DMatch dmatches(i, matchIndex.at<int>(i, 0), matchDistance.at<float>(i, 0));
goodMatches.push_back(dmatches);
}
}
//【12】绘制并显示匹配窗口
Mat resultImage;
drawMatches( captureImage, captureKeyPoints, srcImage, keyPoints, goodMatches, resultImage);
imshow("匹配窗口", resultImage);
//【13】显示帧率
cout << ">帧率= " << getTickFrequency() / (getTickCount() - time0) << endl;
//按下ESC键,则程序退出
if(char(waitKey(1)) == 27)
break;
}
return 0;