目录
术语解释:... 2
NoSQL诞生的原因和优缺点... 2
SQL向NoSQL转变 关系型数据库的局限性... 3
关系型数据库 V.S. 非关系型数据库... 5
非关系型数据库分类... 6
Redis常用的数据类型... 6
redis持久化RDB和AOF. 7
术语解释:
ACID,是指在数据库管理系统(DBMS)中事务所具有的四个特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation,又称独立性)、持久性(Durability)。
NoSQL,泛指非关系型的数据库、NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动。
NoSQL诞生的原因和优缺点
Ø 诞生的原因
随着互联网的不断发展,各种类型的应用层出不穷,所以导致在这个云计算的时代,对技术提出了更多的需求,主要体现在下面这四个方面:
1. 低延迟的读写速度:应用快速地反应能极大地提升用户的满意度;
2. 支撑海量的数据和流量:对于搜索这样大型应用而言,需要利用PB级别的数据和能应对百万级的流量;
3. 大规模集群的管理:系统管理员希望分布式应用能更简单的部署和管理;
4. 庞大运营成本的考量:IT经理们希望在硬件成本、软件成本和人力成本能够有大幅度地降低;
目前世界上主流的存储系统大部分还是采用了关系型数据库,其主要有一下优点:
1.事务处理---保持数据的一致性;
2.由于以标准化为前提,数据更新的开销很小(相同的字段基本上只有一处);
3.可以进行Join等复杂查询。
Ø 关系型数据的限制
虽然关系型数据库已经在业界的数据存储方面占据不可动摇的地位,但是由于其天生的几个限制,使其很难满足上面这几个需求:
1. 扩展困难:由于存在类似Join这样多表查询机制,使得数据库在扩展方面很艰难;
2. 读写慢:这种情况主要发生在数据量达到一定规模时由于关系型数据库的系统逻辑非常复杂,使得其非常容易发生死锁等的并发问题,所以导致其读写速度下滑非常严重;
3. 成本高:企业级数据库的License价格很惊人,并且随着系统的规模,而不断上升;
4. 有限的支撑容量:现有关系型解决方案还无法支撑Google这样海量的数据存储;
业界为了解决上面提到的几个需求,推出了多款新类型的数据库,并且由于它们在设计上和传统的NoSQL数据库相比有很大的不同,所以被统称为“NoSQL”系列数据库。总的来说,在设计上,它们非常关注对数据高并发地读写和对海量数据的存储等,与关系型数据库相比,它们在架构和数据模型方量面做了“减法”,而在扩展和并发等方面做了“加法”。现在主流的NoSQL数据库有BigTable、HBase、Cassandra、SimpleDB、CouchDB、MongoDB和Redis等。
Ø NoSQL数据库优缺点
优缺点
在优势方面,主要体现在下面这三点:
1. 简单的扩展:典型例子是Cassandra,由于其架构是类似于经典的P2P,所以能通过轻松地添加新的节点来扩展这个集群;
2. 快速的读写:主要例子有Redis,由于其逻辑简单,而且纯内存操作,使得其性能非常出色,单节点每秒可以处理超过10万次读写操作;
3. 低廉的成本:这是大多数分布式数据库共有的特点,因为主要都是开源软件,没有昂贵的License成本;
但瑕不掩瑜,NoSQL数据库还存在着很多的不足,常见主要有下面这几个:
1. 不提供对SQL的支持:如果不支持SQL这样的工业标准,将会对用户产生一定的学习和应用迁移成本;
2. 支持的特性不够丰富:现有产品所提供的功能都比较有限,大多数NoSQL数据库都不支持事务,也不像MS SQL Server和Oracle那样能提供各种附加功能,比如BI和报表等;
3. 现有产品的不够成熟:大多数产品都还处于初创期,和关系型数据库几十年的完善不可同日而语;
上面NoSQL产品的优缺点都是些比较共通的,在实际情况下,每个产品都会根据自己所遵从的数据模型和CAP理念而有所不同,接下来,将给大家介绍NoSQL两个最重要的概念:数据模型和CAP理念,并在本文最后,对主流的NoSQL数据库进行分类。
SQL向NoSQL转变 关系型数据库的局限性
NoSQL系统一般都会宣传一个特性,那就是性能好,然后为什么呢?关系型数据库发展了这么多年,各种优化工作已经做得很深了,NoSQL系统一般都是吸收关系型数据库的技术,然后,到底是什么因素束缚了关系型数据库的性能呢?我们从系统设计的角度看这个问题。
1,索引支持。关系型数据库创立之初没有想到今天的互联网应用对可扩展性提出如此高的要求,因此,设计时主要考虑的是简化用户的工作,SQL语言的产生促成数据库接口的标准化,从而形成了Oracle这样的数据库公司并带动了上下游产业链的发展。关系型数据库在单机存储引擎支持索引,比如Mysql的Innodb存储引擎需要支持索引,而NoSQL系统的单机存储引擎是纯粹的,只需要支持基于主键的随机读取和范围查询。NoSQL系统在系统层面提供对索引的支持,比如有一个用户表,主键为user_id,每个用户有很多属性,包括用户名,照片ID(photo_id),照片URL,在NoSQL系统中如果需要对photo_id建立索引,可以维护一张分布式表,表的主键为形成的二元组。关系型数据库由于需要在单机存储引擎层面支持索引,大大降低了系统的可扩展性,使得单机存储引擎的设计变得很复杂。
2,事务并发处理。关系型数据库有一整套的关于事务并发处理的理论,比如锁的粒度是表级,页级还是行级,多版本并发控制机制MVCC,事务的隔离级别,死锁检测,回滚,等等。然而,互联网应用大多数的特点都是多读少些,比如读和写的比例是10 : 1,并且很少有复杂事务需求,因此,一般可以采用更为简单的copy-on-write技术:单线程写,多线程读,写的时候执行copy-on-write,写不影响读服务。NoSQL系统这样的假设简化了系统的设计,减少了很多操作的overhead,提高了性能。
3, 动态还是静态的数据结构。关系型数据库的存储引擎总是一颗磁盘B+树,为了提高性能,可能需要有insert buffer聚合写,query cache缓存读,经常需要实现类似Linux page cache的缓存管理机制。数据库中的读和写是互相影响的,写操作也因为时不时需要将数据flush到磁盘而性能不高。简而言之,关系型数据库存储引擎的数据结构是通用的动态更新的B+树,然而,在NoSQL系统中,比如Bigtable中采用SSTable + MemTable的数据结构,数据先写入到内存的MemTable,达到一定大小或者超过一定时间才会dump到磁盘生成SSTable文件,SSTable是只读的。如果说关系型数据库存储引擎的数据结构是一颗动态的B+树,那么SSTable就是一个排好序的有序数组。很明显,实现一个有序数据比实现一个动态B+树且包含复杂的并发控制机制要简单高效地多。
4,Join操作。关系型数据库需要在存储引擎层面支持Join,而NoSQL系统一般根据应用来决定Join实现的方式。举个例子,有两张表:用户表和商品表,每个用户下可能有若干个商品,用户表的主键为,用户和商品的关联属性存放在用户表中,商品表的主键为item_id,商品属性包括商品名,商品URL,等等。假设应用需要查询一个用户的所有商品并显示商品的详细信息,普通的做法是先从用户表查找指定用户的所有item_id,然后对每个item_id去商品表查询详细信息,即执行一次数据库Join操作,这必然带来了很多的磁盘随机读,并且由于Join带来的随机读的局部性不好,缓存的效果往往也是有限的。在NoSQL系统中,我们往往可以将用户表和商品表集成到一张宽表中,这样虽然冗余存储了商品的详细信息,却换来了查询的高效。
关系型数据库的性能瓶颈往往不在SQL语句解析上,而是在于需要支持完备的SQL特性。互联网公司面临的问题是应用对性能和可扩展性要求很高,并且DBA和开发工程师水平比较高,可以通过牺牲一些接口友好性来换取更好的性能。NoSQL系统的一些设计,比如通过宽表实现Join操作,互联网公司的DBA和开发工程师也做过,NoSQL系统只是加强了这种约束。从长远来看,可以总结一套约束集合,并且定义一个SQL子集,只需要支持这个SQL子集就可以在不牺牲可扩展性的前提下支持比如90%以上的互联网应用。我想,NoSQL技术发展到这一步的时候就算是比较成熟了,这也是我们最终想做的事情。我们在设计和使用NoSQL系统的时候也可以适当转化一下思维,如下:
1,更大的数据量。很多人在使用Mysql的过程遇到记录条数超过一定值,比如2000W的时候,数据库性能开始下降,这个值的得出往往需要经过大量的测试。然而,大多数的NoSQL系统可扩展性都比较好,能够支持更大的数据量,因此也可以采用一些空间换时间的做法,比如通过宽表的方式实现Join。
2, 性能预估更加容易。关系型数据库由于复杂的并发控制,insert buffer及类似page cache的读写优化机制,性能估算相对较难,很多时候需要凭借经验或者经过测试才能得出系统的性能。然后,NoSQL系统由于存储引擎实现,并发控制机制等相对简单,可以通过硬件的性能指标在系统设计之处大致预估系统的性能,性能预估可操作性相对更强。
关系型数据库 V.S. 非关系型数据库
关系型数据库的最大特点就是事务的一致性:传统的关系型数据库读写操作都是事务的,具有ACID的特点,这个特性使得关系型数据库可以用于几乎所有对一致性有要求的系统中,如典型的银行系统。
但是,在网页应用中,尤其是SNS应用中,一致性却不是显得那么重要,用户A看到的内容和用户B看到同一用户C内容更新不一致是可以容忍的,或者说,两个人看到同一好友的数据更新的时间差那么几秒是可以容忍的,因此,关系型数据库的最大特点在这里已经无用武之地,起码不是那么重要了。
相反地,关系型数据库为了维护一致性所付出的巨大代价就是其读写性能比较差,而像微博、facebook这类SNS的应用,对并发读写能力要求极高,关系型数据库已经无法应付(在读方面,传统上为了克服关系型数据库缺陷,提高性能,都是增加一级memcache来静态化网页,而在SNS中,变化太快,memchache已经无能为力了),因此,必须用新的一种数据结构存储来代替关系数据库。
关系数据库的另一个特点就是其具有固定的表结构,因此,其扩展性极差,而在SNS中,系统的升级,功能的增加,往往意味着数据结构巨大变动,这一点关系型数据库也难以应付,需要新的结构化数据存储。
于是,非关系型数据库应运而生,由于不可能用一种数据结构化存储应付所有的新的需求,因此,非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合。
必须强调的是,数据的持久存储,尤其是海量数据的持久存储,还是需要一种关系数据库这员老将。
非关系型数据库分类
由于非关系型数据库本身天然的多样性,以及出现的时间较短,因此,不想关系型数据库,有几种数据库能够一统江山,非关系型数据库非常多,并且大部分都是开源的。
这些数据库中,其实实现大部分都比较简单,除了一些共性外,很大一部分都是针对某些特定的应用需求出现的,因此,对于该类应用,具有极高的性能。依据结构化方法以及应用场合的不同,主要分为以下几类:
面向高性能并发读写的key-value数据库:
key-value数据库的主要特点即使具有极高的并发读写性能,Redis,Tokyo Cabinet,Flare就是这类的代表
面向海量数据访问的面向文档数据库:
这类数据库的特点是,可以在海量的数据中快速的查询数据,典型代表为MongoDB以及CouchDB
面向可扩展性的分布式数据库:
这类数据库想解决的问题就是传统数据库存在可扩展性上的缺陷,这类数据库可以适应数据量的增加以及数据结构的变化。
Redis常用的数据类型
Redis常用的数据类型主要有以下五种:
String
Hash
List
Set
Sorted set
在具体描述这几种数据类型之前,我们先通过一张图了解下Redis内部内存管理中是如何描述这些不同数据类型的:
首先Redis内部使用一个redisObject对象来表示所有的key和value,redisObject最主要的信息如上图所示:type代表 一个value对象具体是何种数据类型,encoding是不同数据类型在redis内部的存储方式,比如:type=string代表value存储的 是一个普通字符串,那么对应的encoding可以是raw或者是int,如果是int则代表实际redis内部是按数值型类存储和表示这个字符串的,当 然前提是这个字符串本身可以用数值表示,比如:"123" "456"这样的字符串。
这里需要特殊说明一下vm字段,只有打开了 Redis的虚拟内存功能,此字段才会真正的分配内存,该功能默认是关闭状态的,该功能会在后面具体描述。通过上图我们可以发现Redis使用 redisObject来表示所有的key/value数据是比较浪费内存的,当然这些内存管理成本的付出主要也是为了给Redis不同数据类型提供一个统一的管理接口,实际作者也提供了多种方法帮助我们尽量节省内存使用,我们随后会具体讨论。
redis持久化RDB和AOF
提供了多种不同级别的持久化方式:一种是RDB,另一种是AOF.
RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot)。
AOF 持久化记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集。 AOF 文件中的命令全部以 Redis 协议的格式来保存,新命令会被追加到文件的末尾。 Redis 还可以在后台对 AOF 文件进行重写(rewrite),使得 AOF 文件的体积不会超出保存数据集状态所需的实际大小。Redis 还可以同时使用 AOF 持久化和 RDB 持久化。 在这种情况下, 当 Redis 重启时, 它会优先使用 AOF 文件来还原数据集, 因为 AOF 文件保存的数据集通常比 RDB 文件所保存的数据集更完整。你甚至可以关闭持久化功能,让数据只在服务器运行时存在。
了解 RDB 持久化和 AOF 持久化之间的异同是非常重要的,以下几个小节将详细地介绍这这两种持久化功能, 并对它们的相同和不同之处进行说明。
RDB 的优点:
RDB 是一个非常紧凑(compact)的文件,它保存了 Redis 在某个时间点上的数据集。 这种文件非常适合用于进行备份:比如说,你可以在最近的 24 小时内,每小时备份一次 RDB 文件,并且在每个月的每一天,也备份一个 RDB 文件。 这样的话,即使遇上问题,也可以随时将数据集还原到不同的版本。RDB 非常适用于灾难恢复(disaster recovery):它只有一个文件,并且内容都非常紧凑,可以(在加密后)将它传送到别的数据中心,或者亚马逊 S3 中。RDB 可以最大化Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是fork 出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。
redis自动实现快照的过程
1:redis使用fork函数复制一份当前进程的副本(子进程)
2:父进程继续接收并处理客户端发来的命令,而子进程开始将内存中的数据写入硬盘中的临时文件
3:当子进程写入完所有数据后会用该临时文件替换旧的RDB文件,至此,一次快照操作完成。
注意:redis在进行快照的过程中不会修改RDB文件,只有快照结束后才会将旧的文件替换成新的,也就是说任何时候RDB文件都是完整的。这就使得我们可以通过定时备份RDB文件来实现redis数据库的备份, RDB文件是经过压缩的二进制文件,占用的空间会小于内存中的数据,更加利于传输。
手动执行save或者bgsave命令让redis执行快照。重启redis时候,redis会恢复dump.rdb的备份数据,前提是有dump.rdb。
两个命令的区别在于,save是由主进程进行快照操作,会阻塞其它请求。bgsave是由redis执行fork函数复制出一个子进程来进行快照操作。
RDB 的缺点:
如果你需要尽量避免在服务器故障时丢失数据,那么 RDB 不适合你。 虽然 Redis 允许你设置不同的保存点(save point)来控制保存 RDB 文件的频率, 但是, 因为RDB 文件需要保存整个数据集的状态,所以它并不是一个轻松的操作。 因此你可能会至少 5 分钟才保存一次 RDB 文件。在这种情况下, 一旦发生故障停机, 你就可能会丢失好几分钟的数据。每次保存 RDB 的时候,Redis 都要 fork() 出一个子进程,并由子进程来进行实际的持久化工作。在数据集比较庞大时, fork() 可能会非常耗时,造成服务器在某某毫秒内停止处理客户端; 如果数据集非常巨大,并且 CPU 时间非常紧张的话,那么这种停止时间甚至可能会长达整整一秒。 虽然 AOF 重写也需要进行 fork() ,但无论 AOF 重写的执行间隔有多长,数据的耐久性都不会有任何损失。
AOF 的优点:
使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync 会在后台线程执行,所以主线程可以继续努力地处理命令请求)。AOF 文件是一个只进行追加操作的日志文件(append only log), 因此对 AOF 文件的写入不需要进行 seek , 即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof 工具也可以轻易地修复这种问题。
Redis 可以在 AOF
AOF 的缺点:
对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。 (举个例子,阻塞命令BRPOPLPUSH 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试: 它们会自动生成随机的、复杂的数据集,并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在 AOF 文件中并不常见,但是对比来说, RDB 几乎是不可能出现这种 bug 的。
RDB 和 AOF ,我应该用哪一个?
一般来说,如果想达到足以媲美PostgreSQL 的数据安全性, 你应该同时使用两种持久化功能。如果你非常关心你的数据,但仍然可以承受数分钟以内的数据丢失,那么你可以只使用 RDB 持久化。有很多用户都只使用 AOF 持久化,但我们并不推荐这种方式: 因为定时生成 RDB 快照(snapshot)非常便于进行数据库备份,并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快,除此之外, 使用 RDB 还可以避免之前提到的 AOF 程序的 bug 。因为以上提到的种种原因, 未来我们可能会将 AOF 和 RDB 整合成单个持久化模型。 (这是一个长期计划。)
RDB 快照:
在默认情况下, Redis 将数据库快照保存在名字为 dump.rdb 的二进制文件中。你可以对 Redis 进行设置, 让它在“ N 秒内数据集至少有 M 个改动”这一条件被满足时, 自动保存一次数据集。你也可以通过调用 SAVE 或者 BGSAVE , 手动让 Redis 进行数据集保存操作。比如说, 以下设置会让 Redis 在满足“ 60 秒内有至少有 1000 个键被改动”这一条件时, 自动保存一次数据集:
save 60 1000
这种持久化方式被称为快照(snapshot)。
快照的运作方式:
当 Redis 需要保存dump.rdb 文件时, 服务器执行以下操作:
Redis 调用 fork() ,同时拥有父进程和子进程。
子进程将数据集写入到一个临时 RDB 文件中。
当子进程完成对新 RDB 文件的写入时,Redis 用新 RDB 文件替换原来的RDB 文件,并删除旧的 RDB 文件。
这种工作方式使得 Redis 可以从写时复制(copy-on-write)机制中获益。
只进行追加操作的文件(append-only file,AOF)
快照功能并不是非常耐久(durable): 如果 Redis 因为某些原因而造成故障停机, 那么服务器将丢失最近写入、且仍未保存到快照中的那些数据。尽管对于某些程序来说, 数据的耐久性并不是最重要的考虑因素,但是对于那些追求完全耐久能力(full durability)的程序来说, 快照功能就不太适用了。
从 1.1 版本开始, Redis 增加了一种完全耐久的持久化方式: AOF 持久化。
你可以通过修改配置文件来打开 AOF 功能:
appendonly yes
从现在开始, 每当 Redis 执行一个改变数据集的命令时(比如 SET), 这个命令就会被追加到 AOF 文件的末尾。
这样的话, 当 Redis 重新启时, 程序就可以通过重新执行 AOF 文件中的命令来达到重建数据集的目的。
AOF 重写:
因为 AOF 的运作方式是不断地将命令追加到文件的末尾, 所以随着写入命令的不断增加, AOF 文件的体积也会变得越来越大。举个例子, 如果你对一个计数器调用了 100 次 INCR , 那么仅仅是为了保存这个计数器的当前值, AOF 文件就需要使用 100 条记录(entry)。然而在实际上, 只使用一条 SET 命令已经足以保存计数器的当前值了, 其余 99 条记录实际上都是多余的。为了处理这种情况, Redis 支持一种有趣的特性: 可以在不打断服务客户端的情况下, 对 AOF 文件进行重建(rebuild)。执行 BGREWRITEAOF 命令, Redis 将生成一个新的 AOF 文件, 这个文件包含重建当前数据集所需的最少命令。
AOF 有多耐久?
你可以配置 Redis 多久才将数据fsync 到磁盘一次。
有三个选项:
每次有新命令追加到 AOF 文件时就执行一次 fsync :非常慢,也非常安全。
每秒 fsync 一次:足够快(和使用RDB 持久化差不多),并且在故障时只会丢失 1 秒钟的数据。
从不 fsync :将数据交给操作系统来处理。更快,也更不安全的选择。
推荐(并且也是默认)的措施为每秒 fsync 一次, 这种 fsync 策略可以兼顾速度和安全性。
总是 fsync 的策略在实际使用中非常慢, 即使在 Redis 2.0 对相关的程序进行了改进之后仍是如此 —— 频繁调用 fsync 注定了这种策略不可能快得起来。
如果 AOF 文件出错了,怎么办?
服务器可能在程序正在对 AOF 文件进行写入时停机, 如果停机造成了 AOF 文件出错(corrupt), 那么 Redis 在重启时会拒绝载入这个 AOF 文件, 从而确保数据的一致性不会被破坏。
当发生这种情况时, 可以用以下方法来修复出错的 AOF 文件:
为现有的 AOF 文件创建一个备份。
使用 Redis 附带的redis-check-aof 程序,对原来的 AOF 文件进行修复。
$ redis-check-aof --fix
(可选)使用 diff -u 对比修复后的 AOF 文件和原始 AOF 文件的备份,查看两个文件之间的不同之处。
重启 Redis 服务器,等待服务器载入修复后的 AOF 文件,并进行数据恢复。
AOF 的运作方式
AOF 重写和 RDB
以下是 AOF 重写的执行步骤:
Redis 执行 fork() ,现在同时拥有父进程和子进程。
子进程开始将新 AOF 文件的内容写入到临时文件。对于所有新执行的写入命令,父进程一边将它们累积到一个内存缓存中,一边将这些改动追加到现有 AOF 文件的末尾: 这样即使在重写的中途发生停机,现有的 AOF 文件也还是安全的。当子进程完成重写工作时,它给父进程发送一个信号,父进程在接收到信号之后,将内存缓存中的所有数据追加到新 AOF 文件的末尾。现在 Redis 原子地用新文件替换旧文件,之后所有命令都会直接追加到新 AOF 文件的末尾。
为最新的 dump.rdb 文件创建一个备份。
将备份放到一个安全的地方。
执行以下两条命令:
redis-cli> CONFIG SETappendonly yes
redis-cli> CONFIG SET save""
确保命令执行之后,数据库的键的数量没有改变。
确保写命令会被正确地追加到 AOF 文件的末尾。
步骤 3 执行的第一条命令开启了AOF 功能: Redis 会阻塞直到初始 AOF 文件创建完成为止,之后 Redis 会继续处理命令请求, 并开始将写入命令追加到 AOF 文件末尾。
步骤 3 执行的第二条命令用于关闭RDB 功能。 这一步是可选的, 如果你愿意的话, 也可以同时使用 RDB 和 AOF 这两种持久化功能。
别忘了在 redis.conf 中打开AOF 功能! 否则的话, 服务器重启之后, 之前通过 CONFIG SET 设置的配置就会被遗忘,程序会按原来的配置来启动服务器。
RDB 和 AOF
在版本号大于等于 2.4 的Redis 中, BGSAVE 执行的过程中, 不可以执行BGREWRITEAOF 。 反过来说, 在 BGREWRITEAOF 执行的过程中, 也不可以执行 BGSAVE 。
这可以防止两个 Redis 后台进程同时对磁盘进行大量的 I/O 操作。
如果 BGSAVE 正在执行, 并且用户显示地调用 BGREWRITEAOF 命令, 那么服务器将向用户回复一个 OK 状态,并告知用户, BGREWRITEAOF 已经被预定执行: 一旦 BGSAVE执行完毕, BGREWRITEAOF 就会正式开始。当Redis 启动时, 如果 RDB 持久化和 AOF 持久化都被打开了,那么程序会优先使用 AOF 文件来恢复数据集, 因为 AOF 文件所保存的数据通常是最完整的。
备份 Redis 数据:
Redis 对于数据备份是非常友好的,因为你可以在服务器运行的时候对 RDB 文件进行复制: RDB 文件一旦被创建,就不会进行任何修改。 当服务器要创建一个新的 RDB 文件时, 它先将文件的内容保存在一个临时文件里面, 当临时文件写入完毕时,程序才使用 原子地用临时文件替换原来的 RDB 文件。这也就是说, 无论何时, 复制 RDB 文件都是绝对安全的。
问题困惑搜集
Ø 注: 在dump rdb过程中,aof如果停止同步,会不会丢失?
答: 不会,所有的操作缓存在内存的队列里, dump完成后,统一操作.
Ø 注: aof重写是指什么?
答: aof重写是指把内存中的数据,逆化成命令,写入到.aof日志里.以解决aof日志过大的问题.
Ø 问: 如果rdb文件,和aof文件都存在,优先用谁来恢复数据?
答: aof
Ø 问: 2种是否可以同时用?
答: 可以,而且推荐这么做
Ø 问: 恢复时rdb和aof哪个恢复的快
答: rdb快,因为其是数据的内存映射,直接载入到内存,而aof是命令,需要逐条执行